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ABSTRACT 

This research examines the problem of assigning software development tasks to 

teams. The goal of this study is to model the most efficient way of module assignments in 

order to reduce the communication and coordination delays among software teams that arise 

from the improper distribution of software modules. The study quantifies the module 

interactions using software coupling design measure and models these interactions using 

Linear Programming and Cluster Analysis techniques. The performance of the two 

techniques is evaluated to find the one that offers the most favorable set of module 

assignments that can be used by software practitioners in the real world. The results obtained 

from this research suggest that though Linear Programming is the most optimal technique for 

obtaining the solution, it cannot provide solutions for large problems. With an increase in the 

number of modules, the computational time required for Linear Programming model 

increased considerably. Cluster Analysis, on the other hand, provided solutions which were 

not as optimal as Linear Programming but generated module assignments for large module 

count problems. Two types of Cluster Analysis techniques, namely agglomerative clustering 

and partitional clustering were implemented in this research. Of the two, agglomerative 

cluster analysis technique offered the most efficient and practical solution for module 

assignments. This research is an attempt to improve the decision making capabilities of 

software practitioners who often make use of intuitions and their past experiences in the 

process of assigning modules to software development teams. 
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CHAPTER 1 INTRODUCTION 

An Information System can be defined as an aggregation of practices and 

methodologies to translate data into information and knowledge that is useful to 

organizations and/or other entities. An Information Systems development life cycle refers to 

the process of evolution of the information system and consists of four phases- planning, 

analysis, design and implementation. This research focuses on the design phase of the 

Information Systems development life cycle.  

Software design defines how the system functions by determining the hardware, 

software and network infrastructure required for operation (Alan Dennis, 2005).The software 

design activity starts with structuring high-level system design platform, system architecture, 

deployment environment, hardware and software resource requirements and extends to finer 

details such as module design, data flow, communication flow and so on. Technological 

innovations, evolving programming models and complex development environments have 

altered the traditional methods of software design used by practitioners. One of the software 

design approaches that have been inherently used is the structured design approach that 

advocates the philosophy of configuring an information system as a set of components. Each 

component is structured to address at least one of the functionalities of the information 

system. The collection of all components constitutes the information system as a whole. 

Structured design refers to the “art of designing the components of a system and the 

interrelationship between those components in the best possible way”(Edward Yourdon, 

1975). Structured design can be implemented by dividing software code into discrete 

functional units known as modules, based on the similarity of purpose and commonality of 

data. The modular structure of software results in some immediate benefits such as ease of 

implementation, efficient maintenance and reduced cost of modification. The cost of 

implementing an information system with modular design minimizes  system faults and 
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system costs because the parts of problem(s) to be handled become small and solvable 

separately (Edward Yourdon, 1975).  

A module represents the basic work item of an information system design. A module 

can be tailored to represent a subsystem, an object or a class. In object oriented systems, a 

module represents the smallest unit of code that can be developed independently. The object-

oriented software design approach involves designing modules by grouping the data and 

processes such that they address at least one of the functional requirements of the software. 

Once the modules have been determined, the next task in the design process is to allocate 

these modules to different software teams so that they can be developed independently. 

Though each module addresses certain functionality, since the software package is a 

collection of all these individual modules, there is some level of dependency among the 

modules. Even though the modules are developed individually, they cannot operate in 

complete isolation. The interdependency among modules complicates the task of 

disconnected software development since dependent modules share data, memory and/or 

processes. In order to deal with the module interdependencies, constant communication and 

coordination between teams is required. The absence of effective communication can lead to 

inefficient software development.  

Managing functional dependencies between modules during early stages of software 

design ensures better software quality (Hung-Fu & Lu, 2009) . The goal of this effort is to 

construct a methodology that can be used by software practitioners for assigning software 

modules (development work items) across concurrent development teams. This will 

streamline communication flow across teams and allow software development projects to be 

completed faster, and with a lower risk of project failures.  
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1.1 Motivation 

Though the concept of structured design has been around in the industry for few 

decades, the dawn of globalization has added a new dimension to the validity and 

significance of this approach. Globalization has resulted in geographically distributed 

development sites, creating new challenges and complexities for software practitioners. 

Dynamic business needs and availability of resources have changed the structure of software 

production. The nature of global software projects has led to distributed development sites 

(Mockus & Weiss, 2001), with several remotely located teams, placing high demands on the 

level of communication and coordination. It is highly challenging to configure and control 

the organizational makeup of software teams. Improper communication and collaboration 

result in negative productivity and longer production intervals.  

Practices influencing research and proven methodologies (Damian & Moitra, 2006) 

have helped in cultivating global software development. Quantitative research (Damian & 

Moitra, 2006) has shown that work items in distributed environments appear to consume 

larger chunks of time, about 2.5 times of time required for completion of work items which 

are developed together at one site. Delays in productivity can be attributed to glitches caused 

by lack of communication and coordination, along with the complexity and size of the 

project (Bin et al., 2007).  

The software design activity for distributed environments is ingenious. Software 

managers often determine the distribution of software module designs to development teams 

based on the assignment decisions made in past projects and their intuition. Developing an 

optimal methodology of partitioning modules in a software package improves the decision 

making capability of software managers. It helps them in comparing their learning, 

knowledge of work item (module) distribution and intuition with the scientific approach 
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developed as a part of this study. The benefits of the software modules partitioning 

techniques proposed in this research include 

 practical and optimal module assignment logic, 

 reduced communication and collaboration delays with respect to software 

development within and across teams, 

 increased productivity in distributed software development environments, 

 improved management of shared data and processes in a software project and 

 increased accountability of developers for the assigned modules 

Coupling is a software design measure that assesses the strength of the 

interconnection or the extent of dependency between modules. It reflects how much change 

is required in one module, after changing some other module in the system. Module coupling 

helps in determining understandability, testability, maintainability and reliability of software 

(Hla Myat, Nan Si, & Ni Lar, 2005).  

While proposing software design, the aim is to develop a system consisting of loosely 

coupled modules. Such design provides the advantage of manipulating a module without 

disturbing much of the configuration of other modules in the set (collection of modules, 

software package). This research is based on the theory of coupling and its application in the 

partition of software modules. 

1.2 Summary Problem Statement 

The primary objective of this research is to devise an efficient technique for grouping 

software modules with an aim of assigning these modules across development teams. Object-

oriented systems form the environment and software modules constitute the variables 

monitored as part of this study. Literature search in the field of modularization and coupling 

reveals that no methodology has been developed in the area of software engineering to help 
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practitioners in optimal decision making process of allotting the software modules (software 

development tasks) to teams. The research questions that need to be addressed are: 

 What are the efficient techniques for partitioning software modules? 

 How can these techniques be implemented? 

 Which technique offers the best solution? 

Linear Programming and cluster analysis are examined as the techniques for 

partitioning software modules. Linear Programming approach can produce optimal grouping 

of modules while cluster analysis offers a fast heuristic approach. The results from both these 

approaches are examined to find the optimal and practical solution that can be used in the 

real world by software practitioners. The results from this research can be used in distributed 

software development environments to aid software productivity and reduce communication 

setbacks. 
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CHAPTER 2 LITERATURE REVIEW 

This section summarizes the literature study conducted for formulating the research 

methodology. 

2.1 Modularization 

Modularization is the main characteristic of modern business applications. It is a 

technique of separating software code into chunks of „domain modules‟ (Sarkar et al., 2009) 

such that interactions among modules is minimized. Frequent changes, upgrades and 

maintenance in requirements due to evolving markets and varying customer preferences 

result in the need for flexible and comprehensible systems (Parnas, 1972), where every 

domain module can be changed without a need to change other modules and every module in 

the software can be studied one at a time. System modularization does not imply random 

division of a system into modules instead; it involves a well-defined approach to generate 

segments which are meaningful in isolation and also communicate with other modules in the 

system. Such modules simplify reassembly, replacement and other maintenance activities 

without a need for changing the whole system. Thus, modularization of software helps in 

achieving maintainability and flexibility. 

A domain module is a basic functional unit of software development and maintenance 

(David, Gerald, & Frank, 1985). A module is the fundamental component of any structured 

software design. By configuration, a module can be a subsystem or a set of data and 

processes wrapped together. Several modules may share all or part of data and processes. A 

good module (Sarkar et al., 2009)  provides access to data and processes which satisfy a 

specific functional requirement. The extent to which data and processes are shared among 

modules, determines the extent of interdependency between those modules.  
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The definition of module can be manipulated to fit into different levels of software 

design. At high-level of software design, a module can assume the meaning of a sub-system 

or any other high-level functional unit of an information system whereas at low-level of 

software design, a module can be a class, an object or a collection of these. Successful 

attempts have been made in implementing modularization at high level design as well as 

decomposing modules into sub-modules (Michael & David, 1996) to facilitate convenient 

reuse and remodeling.  

The guidelines for modularization discussed in literature (David et al., 1985; Parnas, 

1972; Sarkar et al., 2009) are similar but the approaches differ in the way they are 

implemented. One of the approaches examines modularization at two levels (Parnas, 1972); 

first wherein the module design is based on the structure of software design flowchart and the 

second that is based on „information hiding‟, wherein the modules are generated such that the 

information within a module is hidden from other modules. Modularization based on 

flowchart might be easy to achieve since there is little transparency in the flow of data and 

inter-module procedural calls but it does not capture the difficult design decisions. Thus, 

modules should be designed based on the data and collection of code and not the steps 

corresponding to the flowchart (Parnas, 1972). Modularization based on relaxing the 

standards of information hiding (Michael & David, 1996) limits every sub-module 

component to one design choice such as data structure, data type and time of binding, etc. 

Such decompositions promote the idea of limiting the module to a fewer  number of 

decisions (Garlan, Allen, & Ockerbloom, 2009; Kiczales, 1996).  

The goal of managing dependencies is essential to modularization. The process of 

software design needs to be carefully implemented in order to identify and create modules 

that manage dependencies and provide traceability. The Axiomatic Design approach (Hung-

Fu & Lu, 2009)  helps in tracing the different design decisions by constraining the number of 

decisions and dependencies that should exist as a part of good software design. 
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One of the recent approaches to modularization suggests a three-layered architecture 

for examining modularization: application, domain and infrastructure (Sarkar et al., 2009). 

The modules are formed such that they serve as access points to all the three layers of a 

business application. Each layer consists of modules that provide specific functionality. This 

approach limits the direction of communication among modules. The modules within a layer 

are designed to communicate with other modules in the same layer using an application 

program interface. The modules residing in the upper layers of the system design can 

communicate directly with the modules in the lower layers. However, the modules in the 

lower layer should be designed in such a way that they cannot communicate with modules in 

the higher layers. 

The literature study on modularization reveals that the primary challenge in 

modularizing applications is in finalizing the criteria consisting of an appropriate mix of 

module strength, module size, information hiding and design decisions. Although smaller 

module size costs more than larger module size (David et al., 1985), choosing only module 

size is the least convincing strategy for optimal modularization. The resultant set of modules 

in every structured design initiative should have minimal fault rate and low cost. A great 

responsibility lies with the developers in implementing the modular design structure to 

ensure that the benefits of modularization, evident in the software design are carried forward 

in their entirety and remain valid in the software implementation phase as well. Module size 

and module strength should always be considered in parallel while modularizing the system. 

This will not only ensure lower cost but also lower fault-rates, provided the programmers are 

suitably encouraged to write high-strength modules. The real test of modularization lies in 

striking a balance between module strength and information hiding. Hence, practitioners 

need to put in a lot of effort to propose a structured software design that satisfies all 

modularization principles. 
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2.2 Coupling 

Coad and Yourdon (Yourdon, 1991), define a good software design as “one that 

balances trade-offs to minimize the total cost of the system over its entire lifetime”. Software 

design quality in an object-oriented system can be evaluated using a pre-defined set of 

criteria. The set of criteria primarily consist of coupling and cohesion (Alan Dennis, 

2005).While coupling measures the interdependency between modules, cohesion measures 

the closeness of the processing elements of the modules data and functions taken together.  

Coupling exposes the visibility of interactions among various modules of the system. 

It helps in identifying and understanding the set of modules that would be impacted together, 

due to high degree of dependency. In case a change is required in one module, coupling 

allows identification of those modules that need to be changed in order to maintain the 

software system design. Consider two modules under observation, Module A and Module B. 

Module A is said to be tightly-coupled with Module B if Module A is highly dependent on 

Module B and vice-versa. This implies that changes in Module A can cause significant 

changes in Module B. Thus in order to understand the functioning of Module A, the 

functioning of module B should be known. 

The degree of coupling is directly proportional to the extent of interactions among 

modules. The magnitude of coupling can be specified in quantitative as well as qualitative 

terms. The stronger is the interaction among modules, the higher is the degree of coupling; 

and the weaker is the interaction among modules, the lower is the coupling. The cost of 

developing a  modular software system is largely determined by the existence of the type of 

coupling and the extent of coupling between modules (Edward Yourdon, 1975; Mockus & 

Weiss, 2001). 

There exists a conflict between the opinions of software engineering gurus and 

practitioners when it comes to identifying the modularization drivers. Related work in this 
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area (Brito e Abreu & Goulao, 2001) suggests the existence of other design criteria (semantic 

organization) apart from coupling and cohesion, which serve as modularization drivers and 

are more convincing to the practitioners.  

The debate in identifying modularization drivers might place relatively less weight on 

coupling and cohesion as the panacea, but these measures help in predicting the behavior of 

the modules. In modular systems, there is a need to clearly understand the direction of 

information flow, the frequency of communication, the amount and type of shared data, 

common processes etc. These factors influence the performance of the system. Efficient 

design includes benefits derived from coupling and cohesion. Since this research examines 

the issue of partitioning software modules, it makes use of only coupling to model the 

software module assignments.  

Research studies prove that coupling and cohesion should be examined together and 

not in isolation in the context of software maintenance (Darcy, Kemerer, Slaughter, & 

Tomayko, 2005). Wood‟s task complexity model offers a solution to capture coupling 

complexity by accounting for the sources of task complexity, namely component, 

coordinative and dynamic. Though coupling and cohesion are two different structural 

complexity measures, there exists an „interaction term‟ (Darcy et al., 2005) that associates 

coupling and cohesion and helps in better understanding of each program unit in terms of 

design, development and maintenance.  

Since this study focuses on determining module assignments to teams based on the 

interactions between modules, it is assumed that excluding cohesion design metric will not 

lead to biased results. Coupling strengths between modules forms the basis of this research. 

One of the prime cost reduction targets of the traditional SDLC model (Software 

Development Life Cycle) is the software development phase. The costs of development are 

directly affected by the software design, skills of software developers and the resources 

allocated for development (infrastructure, time to go-live, etc).  Better designs lead to better 
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performance and economical budget allocations. Downstream phases in SDLC are directly 

impacted by the decisions taken in the upstream. After requirements gathering, software 

design is the next most important phase of SDLC. Subsequent phases of SDLC base their 

assessments and performance out of phase. Continuous refinement of the decisions made in 

the software design phase is imperative for identifying opportunities for cost reduction and 

for system improvement opportunities.  

Poisson regression models (Briand & Wust, 2001) using coupling, cohesion and class 

size have been used in determining the software development efforts. Coupling and cohesion 

explain development effort to a limited extent. The main driver for development effort was 

found to be class size. The management of coupling (Cain & McCrindle, 2002) in the 

software design helps in improving team dynamics and system productivity. When software 

is being developed by teams, it is important to understand the distribution of tasks and 

module development plans in order to ensure good structured software system. This study 

focuses on coupling and examines how it influences the module assignments in the process 

of software development and improves the productivity of the system.  

The structure of teams helps in improving and accelerating the development of any 

project under observation. Clustering techniques (Paul & Jack, 2000) have been used 

successfully in the allocation of  tasks for concurrent teams operating in the engineering 

domain. The task allocation approach used for engineering teams cannot be directly applied 

to software teams because of the difference in the nature of engineering tasks and software 

development tasks.  

Cluster analysis (Brito e Abreu, Pereira, & Sousa, 2000) has been used to account for 

the quality of modularization in software systems. Cluster analysis can be used to group 

modules into distinct clusters. Each cluster consisting of finite set of modules can be 

allocated to different software development teams. Such task assignment helps in reducing 

communication and coordination glitches across teams.  
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The literature review suggests the need to improve quality, performance and 

productivity of software systems using design criteria, predominantly coupling, since it 

classifies modules based on their interactions with other modules in the system. This study 

focuses on areas not explored by previous research and formulates methodologies that 

partition modules into different groups. It uses clustering and Linear Programming 

techniques to group modules into clusters such that highly interactive modules are grouped in 

one cluster.  
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CHAPTER 3 RESEARCH METHODOLOGY 

The aim of this study is to devise a methodology for optimal classification of modules 

into groups depending on the strength of module interactions. The modules are partitioned 

such that the modules which are highly dependent on each other are grouped into a single 

cluster and modules in one cluster are less dependent on modules of the other cluster. The 

problem formulation for the research involves addressing the following goals: 

 developing efficient techniques for grouping software modules by preserving 

software design policy of reduced coupling and enhanced cohesion among 

modules, and 

 comparing the suggested techniques in order to find the most feasible 

technique that can be implemented by software practitioners to solve large 

scale module assignment problems 

The steps that were followed in order to realize the goals mentioned above are as 

follows: 

 identifying modular software systems and quantifying the coupling data 

between modules, 

 investigating the traditional techniques to classify/group data observations, 

 modifying the traditional methods to suit the needs of the research problem, 

 generating the sample data for the research,  

 comparing the results by applying different techniques to sample data, and 

 suggesting the most optimal method for use in real world 

The results obtained from this research are expected to help software practitioners in 

assigning the software modules to development teams such that the communication and 

coordination delays arising across teams due to improper assignments are reduced resulting 

in quicker development cycles. 
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3.1 Research Description 

This research is specifically targeted at modular systems developed as a part of 

object-oriented system design. This research issue of module assignments is handled by 

considering initially, a system composed of a small set of modules. To start with a module 

count of 5 is considered for formulating the partition methodology. This was done with the 

purpose of ease of problem formulation for a smaller module count. The module count is 

gradually increased till the stage where results could be easily computed using Linear 

Programming and Clustering. The limit on the highest number of modules considered for this 

research reflects the complexity of the research issue and the extent of difficulty in modeling 

and achieving the most favorable module assignments. 

As mentioned in the previous sections, coupling can be applied at different levels of 

system design; module, class, sub-system etc. In this research, coupling is studied at module 

level, though it can be extended to class or sub-system level. A change in the level of 

coupling changes the method of quantifying coupling coefficients. The methodology 

suggested in this paper for module partition can be applied directly to scenarios using 

coupling at different levels since the suggested methodology is independent of the coupling 

level under observation.  

The coupling coefficients are used as inputs for this research. Coupling coefficients 

are calculated depending on the coupling categories and their designated weight schemes. If 

coupling is examined at a different level of software design, apart from module level, such as 

sub-system etc then the scheme used in this research for calculating coupling coefficient 

cannot be applied directly. In such cases a new method of measuring coupling coefficient 

capturing is required. 

The output of the research consists of subsets or groups of modules. The groups 

combine highly related modules together. The research ensures that the module assignments 
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generated in the output preserve the software design philosophy of low coupling. At the 

higher level of system design, the proposed method can be modified to study the optimal 

groupings of sub-systems which could be developed together, while at lower level of system 

design, the proposed method can be used to identify the classes which should be developed 

together by teams present at same work location. The steps undertaken for conducting this 

research are listed in the sequential order: 

 preparing the interdependence matrix, 

 transforming the interdependence matrix into distance matrix, 

 obtaining the Linear Programming results(objective function value and 

grouping assignments) by using interdependence matrix as an input to the 

Linear Programming model (solved by Premium Solver excel add-in), 

 computing the clusters using SAS program by using distance matrix as input, 

 testing for the objective function value by plugging in the cluster results 

(grouping assignments) derived from SAS, and 

 comparing the change in objective function value and group assignments for 

Linear Programming and Clustering 

3.2 Quantifying Coupling 

Measuring the quality of software design is essential for building a robust Information 

System. Estimating software quality from software design helps in avoiding expenses that 

result from bad architecture or design of the software systems. Post implementation changes 

demand huge investments. Software design offers a good platform to estimate the system 

performance.  

Software design quality is examined by identifying the components that make up the 

system and understanding the interrelationships between the modules. The interrelationship 

between modules exposes the frequency of interactions, type of data movement (call-by-



www.manaraa.com

16 

 

reference, call-by-value etc) between modules, locus of impact (Offutt, Abdurazik, & 

Schach, 2008), relationship between modules and other interaction details. The information 

on these interactions and interrelationships is well-captured by coupling. Coupling-based 

structural metrics involve examination of the quality of coupling as a design measure.  

The approach for measuring software design quality using coupling has evidenced 

significant changes. Literature review on the measurement of software quality suggests a 

change in the level at which coupling is examined. The common principle of measuring 

software design quality is to examine the call traffic between modules (using graphs and sub-

graphs). However, the approaches of measuring software design quality differ in levels at 

which coupling is studied.  The design measures overlap in dimensions of quality 

measurement (Lionel, Jurgen, John, & Porter, 2000). The measures coincide to predict the 

same set of quality attributes of a software design.  

Before proceeding with the measurement of coupling-based software quality, it is 

important to choose the level of coupling at which the quality metrics need to be defined; 

class-level, system level, and/or Application Program Interface (API) level and so on. 

Couplings can be studied at different levels; at module-level or API level (Sarkar, Rama, & 

Kak, 2007) by segregating aspects of software design at architectural and structural level. 

Techniques have been developed (Offutt et al., 2008) for evaluating coupling of classes that 

are not exposed until runtime. These techniques analyze the source code to identify the 

existence of coupling and to make use of criteria such as number of classes, types of coupling 

to effectively construct the quality metric. The structural metrics that quantify coupling (for 

modules residing in API Application Program Interface) and the mode in which they 

communicate with different modules in the program reflect the evolving nature of software 

architecture.  

The quality of modularization at API level is affected by object-oriented design 

characteristics such as inheritance, base-class design and others (Sarkar, Kak, & Rama, 
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2008). The procedure for measuring the software quality design is carried out by identifying 

and separating modules in the environment in which they exist and function. For example, 

one of the methods that capture the coupling-based structural metrics includes examining the 

modules that reside within an API by using „module interaction index‟ (Aruna, Devi, & 

Deepa, 2008) that measure the frequency of interactions between modules within the API 

with the ones outside the API.  

All coupling measurements capture the strength of module interactions. This research 

does not propose a theory for measuring module coupling but uses pre-existing 

methodologies for quantifying coupling. 

One of the ways of quantifying coupling is by measuring of the strength of 

interconnections between modules (Edward Yourdon, 1975). The following three categories 

measure the strength of module interconnections: 

 Highly coupled, 

 Loosely coupled, and 

 Decoupled/No coupling 

Two or more modules are said to be highly coupled if they have a strong degree of 

interdependence. If modules are highly coupled then a change or maintenance activity in one 

module will cause changes in other dependent modules. This increases software development 

and maintenance problems and leads to poor software performance. The total cost of highly 

coupled modular systems is high. 

Loosely coupled modules are characterized by weak degree of interdependence. 

Loosely coupled modules are less dependent on each other. This reduces the frequency of 

communication. The level of interaction is less in loosely coupled modules as compared to 

highly coupled modules. Loosely coupled modular systems reflect a good system design and 

increase maintainability, flexibility and reliability levels. 
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The modules in the decoupled/uncoupled modular structure do not interact. They 

function independent to each other. Such modular design is difficult to incorporate in real 

world applications. In scenarios wherein modules share data and processes, this modular 

structure is not implemented. 

Coupling can also be quantified based on the object-oriented properties of inheritance 

and interaction (Yourdon, 1991). Inheritance is a feature of object-oriented programming 

wherein new classes are formed using the pre-defined or existing classes. Inheritance 

coupling measures the closeness of classes in the inheritance hierarchy. Problems with 

inheritance are due to the features in object-oriented programming that help in violating 

encapsulation and information hiding (Alan, 1986). Interaction coupling refers to the 

coupling that exists due to the flow of data or messages between modules. It is the coupling 

type that exists when the modules (methods or objects) communicate using message passing. 

The Law of Demeter (Lieberherr & Holland, 1989) suggests minimizing the number of 

interactions the module has with other modules in the program. The Law of Demeter states 

that an object should send messages to only either itself, one of its superclasses, an object 

that is passed as a parameter to a method, an object created by a method, or an object that is 

stored in a global variable 

Every case mentioned above increases the degree of interaction coupling which is not 

considered healthy from a system design perspective. The six types of interaction coupling 

(Jones, 1988; Myers, 1978), in the diminishing order of effect (good to bad) they have on 

systems are: 

 No direct coupling, 

 Data coupling, 

 Stamp coupling, 

 Control coupling, 

 Common or Global coupling, and 
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 Content or Pathological coupling 

No direct coupling is the highly desired type of coupling in which modules of the 

system are not dependent on one another. Hence, there are no interactions among the 

modules constituting the system. Data coupling is the type of coupling where one method 

passes a variable to another method. The method that passes the variable is known as calling 

method and the method that receives the variable is known as the called method. Stamp 

coupling is a slight variation of data coupling. In data coupling, if the calling method passes a 

composite variable to the called method then the called method uses the entire composite 

variable to complete its function. However, in stamp coupling, only a portion of the 

composite variable will be used by the called method. In Control coupling the value of the 

control variable, passed by the calling method, determines the execution of the called 

method. When the methods refer to a „common‟ or „global‟ data area then methods are said 

to be common or globally coupled. Content or Pathological coupling is the least desirable 

form of coupling. The concept of „friends‟ in object-oriented paradigm promotes the 

philosophy wherein a method of one object can refer to hidden parts of another object. 

Content or pathological coupling makes use of this feature. 

The direction of information movement between modules influences interaction 

coupling (Hla Myat et al., 2005). The two broad types of interaction coupling based on 

direction of information flow are import coupling and export coupling. Import coupling 

counts the messages received from modules whereas export coupling counts the messages 

sent to modules. The broad categories of import and export coupling include call coupling, 

scalar coupling, stamp coupling and tramp coupling. 

This research uses coupling coefficients to group modules. The weights assigned to 

coupling categories are nominal, limited to a scale of 0-5, 0 signifying least interdependence 

and 5 signifying maximum interdependence. The coupling coefficients are quantified by 
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considering the type of connection between modules, the complexity of interface, and the 

type of information flow among the connection. 

Two sub-types of connection between modules were identified, namely minimally 

connected and normally connected. A minimally connected module has least level of 

coupling and is the most desirable form of module design. Modules which are minimally 

connected have least interdependency. A normally connected module is more coupled than 

minimally connected module and is the least desirable form of module design. Modules 

which are normally connected have high interdependency. A pathological connection is 

established when a reference to an entity within a module originates from outside the 

module. A good software design does not accommodate pathological connections in module 

interactions. Thus, it is not considered for the purpose of this research.  

The complexity of the interface is measured by the type of the parameter passing 

method. When two or more modules interact there is exchange of data. This data can be 

transferred from one module to another using different parameter passing methods such as 

call by reference and call by value. An implicit reference is received in call by reference 

parameter passing style and it demands a greater communication potential between the 

interacting modules. Call by value, on the other hand, passes arguments using a copy of the 

value, which limits the communication between the two interacting modules.  

The frequency of the calling method determines the extent of use of the module in the 

software package. The more the frequency of calling, the greater is the level of interactions. 

If a module is called frequently by another module in the software package, then the 

frequency of interaction of this module pair is considered to be high.  

When two modules interact, there is flow of information; data and/or control. This 

feature of module interaction was assigned weights depending on the most desirable to least 

desirable form of coupling interaction. The types of interaction couplings quantified for this 

research are data coupling, control coupling and common coupling. If one or all of the 
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contents of one module are included in the contents of another then it is known as content 

coupling. It is least desirable form of module interaction design. It is assumed that the 

modules under observation for the purpose of the research align with the guidelines of a good 

software design; hence this form of coupling is not quantified in this research. 

Binding time accounts for the nature and time when symbolic data references are 

converted into physical machine addresses. If this conversion occurs at compile time then it 

is known as compile time binding and if it is done at execution time then it is known as 

execution time binding. With compile time binding, the inter-modular reference is fixed at 

compile time which leads to stronger reference coupling than execution or run time coupling 

where the association are made at run time. Table 1 summarizes the coupling categories and 

weights used in this research. 

 
Table 1 Coupling Categories and Weights 

Acronym Coupling Category Weight 

MC Minimally connected 0 

NC Normally connected 1 

CR Call-by-reference 2 

CV Call-by-value 1 

FC Frequent calls 2 

NFC Non-frequent calls 1 

DC Data coupling 1 
CC Control Coupling 2 

CmC Common Coupling 3 

CTB Compile Time Binding 2 

RTB Run Time Binding 1 

 

3.3 Research Technologies 

The partitioning of software development modules into distinct groups was 

implemented using Linear Programming and Cluster Analysis. This section describes how 

these traditional methods were modeled to suit the research requirements.  
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3.3.1 Optimization and Linear Programming 

Optimization helps in making the most efficient use of available resources, under 

defined set of operating environments.  The philosophy of optimization rests on the principle 

of choosing the best component from a set of available alternatives. Mathematical 

programming is an optimization technique that helps in finding the optimal solution 

(Anderson, 1994) with limited availability of resources in order to realize the objectives of an 

individual or a business (T.Ragsdale, 2007).  

The approach to any optimization problem involves considering the following issues: 

 The objective that determines the goal that is considered while determining 

the best alternative, 

 The decisions that need to be made to realize the goal, and 

 The constraints that limit the use of resources that are available to realize the 

goal 

3.3.2 Linear Programming in this research 

Linear Programming (LP), one of the mathematical programming techniques, solves 

optimization problems using linear objective functions and linear constraints. Formulating a 

Linear Programming model involves expressing the optimization function algebraically, by 

specifying the objective function, decision variables and the constraints. The steps in 

formulating the Linear Programming problem as adopted from (T.Ragsdale, 2007) for this 

research include the following:  

 understanding the problem,  

 identifying the decision variables,  

 stating the objective function as a linear combination of decision variables,  

 stating the constraints as a linear combination of decision variables, and  

 identifying any upper and lower bounds on the decision variables 
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The problem in this research is to calculate the best possible way in which the 

software modules can be grouped. The decision variables in this research are found to 

indicate the assignment of the modules in same or different groups. Binary decision variables 

are used in this research, a value of 1 indicating module assignments in the same group and a 

value of 0 indicating module assignments in different groups. The objective function for this 

research is formulated using the interdependence index (interdependence value) for each 

module pair. The objective is to maximize the product of decision variable Xij and the 

interdependence index Cij for all possible module pair combinations. The constraints for this 

research are designed to obey the software design rules of modular coupling. Consider a 

scenario with three modules, module i, module j and module k. Let Xij, Xjk and Xik be the 

decision variables denoting the group assignments among modules i, j and k, then the 

maximum combinations of group assignments are as shown below 

 
Table 2 Example of Module Assignments into groups 

Xij Xjk Xik Module i and j Module j and k Module i and k 

1 1 1 Same Group Same Group Same Group 

0 0 0 Different Group Different Group Different Group 

1 1 0 Same Group Same Group Different Group 

1 0 1 Same Group Different Group Same Group 

0 1 1 Different Group Same Group Same Group 

1 0 0 Same Group Different Group Different Group 

0 1 0 Different Group Same Group Different Group 

0 0 1 Different Group Different Group Same Group 

 

The rows indicate in bold denote assignments which are illegal and cannot become a 

part of module assignment logic. This is because they do not obey the law of transitive 

relationship. Consider Module A, Module B and Module C. If Module A and Module B are 

in one group, Module B and Module C are in one group then Module A and Module C 

should also be in the same group. If this law of transitivity is not obeyed then such module 

assignments are illegal and cannot be implemented in the model. These illegal module 
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assignments are the constraints for this research. In order to limit the number of module 

assignments per group, upper and lower bounds for this research are identified. Lower bound 

specifies the minimum number of modules that can exist in a group and upper specifies the 

maximum number of modules per group. 

The Linear Programming model that is formulated for this research is described 

below: 

Consider 

Let V = {1, 2, …, n} be the finite set of modules to be grouped, cij (j > i) be the 

interdependence index of modules i and j, xij (j > i) be the decision variable indicating the 

grouping assignment (1 if i and j are in the same group, 0 otherwise), and l and u be the lower 

and upper bounds, respectively, of the number of modules to be included in each group.  The 

linear integer programming formulation can be written as: 
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The number of decision variables and the number of constraints are given by (6) and 

(7) below (note: integer (binary) constraints are not included in (7), which is given by (6)): 
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The number of constraints (3) and (4) each is given by n, and the number of 

constraints (5) is given by Cn,3, where Cn,3  combination of n objects taken 3 at a time. 

3.3.3 Premium Solver: Linear Programming tool 

The research made use of the in-built Excel Solver add-in to model computations for 

smaller module counts. But the computational limitations of the in-built Excel Solver add-in 

prompted the use of a more powerful tool that would solve problems with large number of 

constraints and computations in a lesser time frame. For this purpose, the research made use 

of Premium Solver provided by Frontline System, Inc ("Solver.com," 2009). The Excel 

Solver PSP 7.0 Education version is used as Excel add-in to solve the Linear Programming 

model of this research. 

3.3.4 Cluster Analysis 

Cluster analysis is defined as the procedure of partitioning data objects (C.Wunsch, 

2009) into required number of clusters. Cluster analysis does not refer to a single method of 

partitioning data but refers to a wide range of algorithms. A cluster is a group or subset 

consisting of the data objects under observation. The goals of cluster analysis can be 

summarized (Blashfield, 1984) as follows: 

 developing a classification, 

 investigating schemes for grouping entities, 

 generating hypothesis through data expression, and 

 determining if the types defined through other procedures are present in a data 

set 
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The cluster analysis is performed in four steps. The first step in cluster analysis is 

feature selection or feature extraction. While both the terms are used interchangeably across 

the clustering literature, there exists a subtle difference between the two. Feature selection 

uses the distinguishing features from a set of candidates (observations) to perform cluster 

analysis (Jain, Duin, & Jianchang, 2000; Jain, Murty, & Flynn, 1999) while feature 

extraction generates features that uniquely identify the observations. Feature selection is very 

important for realizing the effectiveness of the clustering algorithm that is implemented. Any 

defect or error in choosing the features has a negative impact on the clustering results. The 

selected features should provide a clear understanding of the data, since the feature that is 

selected serves as the basis for cluster formation. The features of the data observations are 

used for classifying the observations into distinct sets.  

The second step in clustering analysis is the selection of the clustering algorithm. 

This step involves formulating the proximity measure and criterion function. The proximity 

measure is used to define the method of determining the closeness or belongingness of 

observations. The criterion function helps in generating the clusters by making use of the 

proximity measures.  

The selection of clustering algorithm is followed by the cluster validation procedure. 

Cluster analysis always leads to a definite set of clusters by partitioning the data but there is a 

need to examine the significance of the clusters that are formed as a result of the clustering 

algorithm. If the clustering algorithm leads to cluster formations which are not meaningful 

and/or do not offer easy interpretation, then the clustering algorithm needs to be altered. 

Thus, cluster validation is an important step which aids the comparison of results from 

multiple clustering algorithms to find out the one that best reveals the characteristics of 

objects. 

The final step in the cluster analysis process is the result interpretation. This process 

helps in drawing meaningful insights from the original data. A cluster does not convey 
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results in itself. It is a mere group of the original set of data observations. Hence, post cluster 

formation, a judicious interpretation of the cluster results is required. The set of cluster is not 

considered as “a finished result but only a possible outline” (Anderberg.M, 1973).  

Clustering analysis requires repeated trials and use of different algorithms to obtain 

the best resultant clusters. The primary reason for this is the lack of ability of a single 

clustering algorithm to generate optimal results with different sets of data. In order to find the 

most efficient solution, different clustering algorithms are implemented in this research. 

3.3.5 Cluster Analysis in this Research 

The clustering techniques that are examined in this research are partitional clustering 

and agglomerative hierarchical clustering. While partitional clustering divides the data into a 

pre-specified number of clusters, agglomerative hierarchical clustering results in clusters 

with a sequence of nested partitions. Of all the types of agglomerative hierarchical clustering, 

average link method is used to form the clusters, since it is used in scenarios where the 

objects are similar in their interactions. The average link method uses the average distances 

between all possible pairings of objects and results in compact clusters. The results from both 

the techniques are compared to suggest the most favorable technique. 

The proximity matrix, for both the clustering techniques, is developed using the 

coupling coefficients. Coupling coefficients provide a way of denoting the strength of 

interdependence between modules. The coupling coefficient matrix that is formulated in this 

research for each module pair is referred to as the „interdependence matrix‟. Both partitional 

clustering and agglomerative clustering techniques, calculate the distance between the data 

points (observations) and group the observations based on the distances between the 

individual observations and the clusters.  The formation of pair of cluster(s) is defined by the 

distance function between the clusters or the individual observations. The interdependence 

matrix contains coupling coefficient data. The interdependence matrix is not used directly for 



www.manaraa.com

28 

 

cluster analysis since it does not provide the correct measure of distance between module 

pairs. A sample interdependence matrix for a software system consisting of 5 modules is 

shown in Table 3. 

 
Table 3 Sample interdependence matrix for a system containing 5 modules 

Module One Two Three Four Five 

1 0 1 2 0 5 

2 1 0 4 5 3 

3 2 4 0 4 2 

4 0 5 4 0 1 

5 5 3 2 1 0 

 

Consider two modules from Table 3; module 1 and module 5. The coupling 

coefficient for this pair of module is 5, which implies that module 1 is highly coupled with 

module 5 and hence these modules should be present in one cluster. If the interdependence 

matrix is directly used in cluster analysis, then a value of 5 will indicate greater distance 

between module 1 and module 5 leading to the placement of both the modules into separate 

clusters. In order to avoid this, the research proposes the conversion of interdependence 

matrix into a matrix suitable for use by the clustering methods, referred to as „distance 

matrix‟.  The distance matrix consists of values that can be used directly as input to the 

clustering method.  

The conversion of interdependence matrix into distance matrix is done by using 

transformation functions. The two transformation techniques that are implemented to 

evaluate the clustering performance are linear translation and direct inverse. 

Linear translation technique uses the highest weight assigned to the coupling 

coefficient in the interdependence matrix to form the linear translation equation. The highest 

weight is used as the reference for this transformation. The linear translation is done using 

the following equation, 

(-1) * x + (highest weight) = (-1) * x + 5 
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The variable x denotes the coupling coefficient for a module pair obtained from 

interdependence matrix. Table 4 shows the conversion of the sample interdependence matrix, 

shown in Table 3, into distance matrix using linear translation. 

 
Table 4 Sample distance matrix using linear translation for a system containing 5 modules 

Module One Two Three Four Five 

1 0 4 3 5 0 

2 4 0 1 0 2 

3 3 1 0 1 3 

4 5 0 1 0 4 

5 0 2 3 4 0 

                                            

This research provides the flexibility for change in the weight scale. The highest 

weight scale value can be changed depending on the highest coupling coefficient of the 

module pair in the interdependence matrix.  

Inverse Transformation is formulated using the equation,  

(1/x) 

The variable x denotes the coupling coefficient for a module pair obtained from 

interdependence matrix. In situations where the coupling coefficient value is zero, the 

resultant of inverse transformation is considered to be a large number (example 9999), since 

1/0 is not defined. Table 5 shows the conversion of the sample interdependence matrix, 

shown in Table 3, into distance matrix using direct inverse transformation. 

 
Table 5 Sample distance matrix using direct inverse for a system containing 5 modules 

Module One Two Three Four Five 

1 0 1 0.5 99999 0.2 

2 1 0 0.25 0.2 0.33 

3 0.5 0.25 0 0.25 0.5 

4 99999 0.2 0.25 0 1 

5 0.2 0.33 0.5 1 0 
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The transformation function is applied to each and every module pair value of the 

interdependence matrix.  

3.3.6 SAS: Clustering Tool 

SAS version 9.2 is used for implementing the clustering procedures. The SAS 9.2 

package offers clustering procedures to implement both hierarchical and disjoint clusters. 

The VARCLUS procedure ("Overview: Clustering Procedures," 2010) is used to create 

disjoint clusters and the CLUSTER procedure is used to generate agglomerative hierarchical 

clusters.  

SAS generates the output of hierarchical clustering in the form of a tree structure. 

This research analyzed and divided (cut) the tree structure at suitable levels to form the 

required number of clusters. A sample tree structure for a system consisting of 5 modules is 

shown in Figure 1. 

 
Figure 1 SAS agglomerative clustering result for a system containing 5 modules 
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SAS produces the output of the partitional clustering procedure in the form a table 

displaying the number of clusters generated and the members present in each cluster. The 

table generated for sample system consisting of 5 modules using SAS partitional clustering is 

shown in Figure 2. 

 

 
Figure 2 SAS partitional clustering result for a system containing 5 modules 

The R-square value of a variable in Figure 2 indicates how well separated it is from 

the nearest cluster. The column labeled 1-R**2 Ratio in Figure 2 displays the ratio of (1-R-

squared with Own Cluster)/ (1-R-squared with Next Closest). Smaller values of 1-R**2 ratio 

indicate good clustering. 

SAS procedures are implemented for module count of 5, 10 and 15. The distance 

matrix for cluster analysis is generated using linear translation and direct inverse 

transformation. These matrices are then used as inputs for hierarchical and partitional 

clustering algorithms. Since the SAS clustering procedures do not offer a direct method to 

limit the number of members within a cluster, „maxclusters‟ feature that limits the number of 

clusters being formed is used. The results from the clustering techniques are observed and the 

lowest and highest number of members in each group is calculated. This count serves as the 

upper bound and lower bound of the cluster. The upper bound refers to the maximum number 

of members in a cluster and the lower bound refers to the minimum number of members in a 

cluster. The upper bound and lower bound count obtained from clustering method is used as 
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input to the Linear Programming model. The module assignments that are generated as a part 

of the Linear Programming model; using this upper bound and lower bound values, are 

compared with that of the module assignments suggested by clustering technique. 
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CHAPTER 4 RESULT ANALYSIS 

The quantitative data that is used for conducting this research is derived from the 

coupling coefficients between each pair of modules. Coupling coefficients measure the 

degree of coupling that exists between the pair of modules. Firstly, the coupling categories 

are identified and each identified category is assigned a weight depending on the intensity of 

the coupling (obtained from Table 1). Secondly, the cumulative weight is calculated by 

adding all the coupling weights for the module pair. This aggregated weight is used as the 

coupling coefficient between that module pair. This process is repeated for all the module 

pair combinations. The coupling coefficients for module pairs are represented in a matrix 

form (Refer Table 3).  This serves as the sample data for the Linear Programming model. The 

interdependence matrix consists of coupling coefficients for every module pair. The matrix 

shown in Table 3 represents an example of interdependence matrix for a system consisting of 

5 modules. The diagonal divides the interdependence matrix into two symmetrical halves. 

Thus only the upper-half of the interdependence matrix (Refer Table 6) is used for 

formulating the Linear Programming model. 

 
Table 6 Sample interdependence matrix for a system containing 5 modules (upper half matrix) 

Module One Two Three Four Five 

1  1 2 0 5 

2   4 5 3 

3    4 4 

4     1 

5      

 

The conversion of interdependence matrix into distance matrix, referred to as 

transformation technique in this research, is essential for the purpose of clustering. Coupling 

coefficients for module counts of 5, 10 and 15, is processed using Linear Programming and 

clustering technique. Because of the long computational times required by the Linear 
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Programming model, the maximum module count processed in this research was limited to 

15. The number of binary constraints increases significantly with the number of modules and 

this constrains the computational feasibility of the Linear Programming model to compute 

the results. (Refer Table 7) 

 
Table 7 Increase in binary constraints with module count 

Module Size Number of Constraints 

5 10 

10 120 

15 455 

18 816 

20 1140 

25 2300 

 

The module assignments are obtained using Linear Programming and Cluster 

Analysis. These assignments obtained from both the techniques are compared on the basis of 

the objective function values. The objective function values are compared based on the type 

of clustering algorithm (partitional and agglomerative clustering) and transformation function 

(linear translation and direct inverse). Figure 3 shows the results obtained from Linear 

Programming and cluster analysis for a sample software system consisting of 5 modules. The 

percentage closeness column is the objective function value obtained from SAS as a 

percentage of objective function value obtained from Linear Programming (LP). For 

example, 44.44% of the objective function value obtained from LP, which is 18, is equal to 8, 

the objective function value obtained from SAS. The percentage closeness value is a measure 

of how close the SAS result is to the result obtained from LP. 
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Figure 3 Module assignment results for system containing 5 modules 

Figure 7 and 8 in Appendix summarize the results obtained from Linear Programming 

and cluster analysis for module counts of 10 and 15 respectively. The following section 

summarizes the findings of this research. 

4.1 Inferences 

This section describes the inferences obtained by conducting this research. 

4.1.1 Inference #1  

The percentage closeness value measures how close the clustering results are to the 

ones obtained from Linear Programming. It is observed from Table 8 that, on an average, the 

percentage closeness of the agglomerative clustering technique is more than the partitional 

clustering. Thus agglomerative clustering is more favorable over partitional clustering 

technique for obtaining the optimal module assignments. 

 

 

 

Transformation 
Lower 

Bound 

Upper 

Bound 

Clusters 
Objective 

Function Value 
% 

Closeness 
SAS LP SAS LP 

Partitional Linear 

Translation 

2 3 1,2,4 2,3,4 8 18 44.44 

  
3,5 1,5 

   
1 2 1,5 1,5 10 10 100 

  
2,4 2,4 

   

  
3 3 

   

Partitional Direct  

Inverse 

2 3 1,4,5 2,3,4 10 18 55.55 

  
2,3 1,5 

   
1 3 1,2,4 1,5 6 10 60 

  
3 2,4 

   

  
5 3 

   
Agglomerative Linear 

Translation 

1 3 1,5 1,5 18 18 100 

  
2,3,4 2,3,4 

   
Agglomerative Direct 

Inverse 

1 3 1,4 1,5 9 18 50 

  
2,3,5 2,3,4 
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Table 8 Percentage closeness in objective function value: Clustering Vs LP 

Module Size 
Percentage Closeness in Objective Function Value 

Partitional Clustering Agglomerative Clustering 

5 44.00 100.00 

  100.00 50.00 

  55.55  - 

  60.00  - 

Average 64.89 75.00 

10 81.01 95.77 

  52.85 100.00 

  63.04 44.89 

  69.23 72.85 

Average 66.53 78.38 

15 72.28 100.00 

  75.94 73.45 

  53.90 90.96 

  54.43  - 

Average 64.14 88.14 

Overall Average 65.19 80.50 

 

Figure 4 shows a plot of percentage closeness in objective function value versus the 

module count. As the module count value increases the percentage closeness of 

agglomerative clustering technique increases. This implies that, as module count increases 

agglomerative clustering partitions modules into groups which are more closely aligned to 

Linear Programming module partitioning results. 
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Figure 4 Percentage closeness in objective function value: Clustering Vs LP 

4.2.2 Inference #2 

 
Table 9 Percentage difference in objective function value: Clustering Vs LP 

Module Size 
Percentage Difference in Objective Function Value 

Partitional Clustering Agglomerative Clustering 

5 55.00 0.00 

  0.00 50.00 

  44.44  - 

  40.00  - 

Average 34.86 25.00 

10 18.00 4.00 

  47.00 0.00 

  37.00 55.00 

  31.00 27.00 

Average 33.25 21.50 

15 28.00 0.00 

  24.00 27.00 

  46.00 9.00 

  46.00  - 

Average 36.00 12.00 

Overall Average 34.70 19.50 

 

0%

20%

40%

60%

80%

100%

120%

140%

160%

5 10 15

P
er

ce
n

ta
g
e 

C
lo

se
n

es
s 

in
 O

b
je

ct
iv

e 
F

u
n

ct
io

n
 V

al
u

e

Module Count

Agglomerative Clustering

Partitional Clustering



www.manaraa.com

38 

 

The average value of the percentage difference in objective function decreases with 

the increase in the number of modules for partitional clustering and agglomerative clustering. 

The percentage difference measures the amount of change in objective function value of 

clustering techniques with that of Linear Programming. Figure 4 shows a plot of percentage 

difference in objective function value versus the module count. As the module count 

increases the percentage difference of agglomerative clustering technique decreases more 

rapidly as compared to partitional clustering. This implies that, as module count increases 

agglomerative clustering generates module assignments which are more closely aligned to 

Linear Programming results. 

 

 
Figure 5 Percentage difference in objective function value: Clustering Vs LP 

4.4.3 Inference #3 

Table 10 shows that the change in the transformation function does not drastically 

change the percentage difference in performance of the clustering techniques. Among the 

two techniques, linear translation provides the lesser percentage difference in objective 

function value; see Figure 5, when compared to direct inverse technique. 
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Table 10 Percentage difference in objective function value: Transformation techniques Vs LP 

Module Size 
Percentage Difference in Objective Function Value 

Linear Translation Direct Inverse 

5 55.00 44.00 

  0.00 40.00 

  0.00 50.00 

Average 18.33 44.67 

10 19.00 37.00 

  47.00 31.00 

  55.00 27.00 

  0.00  - 

Average 30.25 31.67 

15 28.00 46.00 

  24.00 46.00 

  0.00 9.00 

  27.00  - 

Average 19.75 33.67 

Overall Average 22.78 36.67 

Thus linear translation is more suitable when an optimal solution is required. 

 

 
Figure 6 Percentage difference in objective function value: Transformation techniques Vs LP 
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Linear Programming model offers a method for obtaining the most favorable 

(optimal) module assignments. Hence, the results obtained from clustering technique are 

compared with that of the Linear Programming model. The objective function value of the 

Linear Programming model acts a reference for measuring the performance of the clustering 

technique. The percentage closeness in objective function value, shown in Table 8, and 

percentage difference in objective function value, shown in Table 9, serve as the metrics for 

comparing the closeness of results obtained from cluster analysis with that of Linear 

Programming. The percentage closeness in objective function value is the cluster analysis 

objective function value expressed as a percentage of the Linear Programming objective 

function. The higher the percentage closeness value, the better is that clustering technique. 

Table 10 displays the percentage difference values calculated from linear translation and 

direct inverse transformation methods. 

Cluster Analysis offers a heuristic approach to cluster generation while Linear 

Programming model is a mathematical programming technique offering best solutions under 

pre-defined set of operating conditions. Partitional clustering and agglomerative clustering 

are the two cluster analysis techniques that were implemented in this research. The overall 

average percentage closeness in objective function value of partitional clustering technique is 

found to be approximately 67% and that of agglomerative clustering is found to be 

approximately 80%.  The overall average percentage difference in objective function value of 

partitional clustering technique is found to be approximately 33% and that of agglomerative 

clustering is found to be approximately 20%.  The higher the value of percentage closeness 

and the lower the value of percentage difference, the more favorable is the technique. Thus it 

can be concluded that the results of agglomerative clustering match 80% of the group 

assignments obtained from Linear Programming. This indicates that in situations where 

Linear Programming model cannot be implemented for modeling group assignments, 
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agglomerative clustering technique can act as a decent substitute to offer results that are 80% 

optimal.  

Agglomerative Clustering method performed better than partitional clustering method 

to provide the optimal solution. This can be attributed to the difference in the proximity 

measures that are used by each of the two techniques. The agglomerative clustering type 

known as average link method is used in this research, which makes use of average distances 

between observations, as the proximity measure while partitional clustering makes use of 

actual distances. Since average distances between observations provide a better measure of 

distances than actual distances, agglomerative clustering was found to provide better results 

for module assignments than partitional clustering. 

4.4.4 Inference #4 

Table 7 shows the effect of increase in module count on the number of constraints. 

Increasing constraints cause considerable increase in the computational time required for 

providing the module assignment solution. Since, agglomerative clustering offers, a 

reasonable solution to the problem at hand, and does not require higher computational time, it 

can be used to implement the group assignments of software modules.  
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CHAPTER 5 CONCLUSION 

5.1 Contribution of this research 

There exists a high degree of complexity in designing a model that would result in 

optimal group assignments of software modules due to the large number of modules in real 

world software applications and the constraints that limit the way these group assignments 

can be realized. Practitioners have always acknowledged the importance of communication 

and coordination in distributed software development team environments. Thus, in such 

development environments, it is required that the modules assigned for development are such 

that the demand for communication is minimal among the modules that are assigned in 

geographically distributed teams for development. This research proposes a method that 

could be used by the practitioners to implement the challenging task of dividing the set of 

modules into groups for assignment to teams operating remotely. 

Though this research suggests a method for optimal module assignments, the Linear 

Programming model cannot be used for solving large problems hence the results obtained 

from cluster analysis needs to be used. Clustering does not offer the best solution but, offers a 

close to best solution for module assignments. As the module count increases, the Linear 

Programming model cannot be used to solve the module assignment problem. Hence, this 

research could not compare the Linear Programming model results with that of clustering 

results for larger module counts.  

5.2 Practical Significance 

This research offers an important insight to the software practitioners on the way the 

module assignments should be made. The benefits of using the methodologies offered as a 

part of this research are: 
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 optimal division of modules among software teams, 

 reduced time to development, 

 increased group dynamics and efficiency, and 

 reduced inter-team dependency 

This research results in opportunities that can be exploited to enhance the decision 

making capabilities of software practitioners. The study focused on the module assignments 

to development teams but did not take into consideration the following factors: 

 the number of members within the team, 

 the capabilities and skills of team members; which are considered to be equal 

in this research, and 

 the number of available teams and the influence of team hierarchical structure 

on module assignments 

The considerations mentioned above will significantly change the module 

assignments in real world scenarios. The future work in this area will quantify each of the 

considerations mentioned above and incorporate the same for modeling optimal module 

partitioning logic in software environment. 
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APPENDIX  

 

 

Figure 7 Module assignment results for system containing 10 modules 

 

Transformation 
Lower 

Bound 

Upper 

Bound 

Clusters 
Objective 

Function Value 
% 

Closeness 
SAS LP SAS LP 

Partitional 

Linear 

Translation 

3 7 3,4,6,7,8,9,10 2,4,5,6,8,9,10 64 79 81.01 

  
1,2,5 1,3,7 

   
2 5 3,6,8,9,10 1,3,5,6,7 37 70 52.85 

  
1,2,5 2,4,8,9,10 

   

  
4,7 

    

Partitional 

Direct  Inverse 

3 4 1,3,6,10 1,4,5 29 46 63.04 

  
4,5,7 2,3,6,7 

   

  
2,8,9 8,9,10 

   
1 3 1,3,6 1,4,5 27 39 69.23 

  
4,5,7 2,3,6 

   

  
2,8,9 8,9,10 

   

  
10 7 

   

Agglomerative 

Linear 

Translation 

4 6 1,3,4,5,6,7 1,2,4,8,9,10 68 71 95.77 

  
2,8,9,10 3,5,6,7 

   
3 4 1,5,4 1,4,5 47 47 100 

  
3,6,7 2,8,9,10 

   

  
2,8,9,10 3,6,7 

   
1 4 1,5 1,4,5,6 22 49 44.89 

  
4 2,8,9,10 

   

  
7 3,7 

   

  
3,6 

    

  
2 

    

  
8,9,10 

    

Agglomerative 

Direct Inverse 

1 6 3,4,6,7,8,9 1,3,5,7 51 70 72.85 

  
5 2,4,6,8,9,10 

   

  

2 

1     

  
10 
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Figure 8 Module assignment results for system containing 15 modules 

  

Transformation 
Lower 

Bound 

Upper 

Bound 

Clusters 
Objective 

Function Value 
% 

Closeness 
SAS LP SAS LP 

Partitional 

Linear 

Translation 

5 10 1,2,3,7,8,9,10,12,13,15 1,2,4,5,6,9,11,12,13,14 120 166 72.28 

    4,5,6,11,14 3,7,8,10,15       

3 4 3,8,9,13 1,6,12,13 60 79 75.94 

    4,5,11,14 2,5,9,11       

    2,7,10,15 3,4,14       

    1,6,12 7,8,10,15       

Partitional 

Direct  Inverse 

2 6 1,2,6,8,14,15 1,4,6,12,13,14 61 113 53.9 

    4,7,11 2,5,9       

    
9,12 

3,5,10,13 
3,7,8,10,11,15       

3 4 2,8,14,15 1,6,12,13 43 79 54.43 

    4,7,11 2,5,9,11       

    9,12 3,4,14       

    1,5,6 7,8,10,15       

    3,10,13         

Agglomerative 

Linear 

Translation 

7 8 1,2,5,6,9,11,12,13 1,2,5,6,9,11,12,13 152 152 100 

    3,4,7,8,10,14,15 3,4,7,8,10,14,15       

2 6 1,12,13,6,5,11 1,4,6,12,13,14 83 113 73.45 

    2,9 2,5,9       

    3,7,15,8,10 3,7,8,10,11,15       

    4,14         

Agglomerative 

Direct Inverse 

1 10 1,2,6,9 1,2,4,5,6,9,11,12,13,14 151 166 90.96 

    3,4,5,7,8,11,12,13,14,15 3,7,8,10,15       

    10         
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