
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Efficient techniques for partitioning software
development tasks
Samyukta Soothram
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Business Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Soothram, Samyukta, "Efficient techniques for partitioning software development tasks" (2010). Graduate Theses and Dissertations.
11612.
https://lib.dr.iastate.edu/etd/11612

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11612?utm_source=lib.dr.iastate.edu%2Fetd%2F11612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Efficient techniques for partitioning software development tasks

by

Samyukta Soothram

A thesis submitted to the graduate faculty

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Information Systems

Program of Study Committee:

Zhengrui Jiang, Major Professor

Yoshinori Suzuki

Michael Crum

Iowa State University

Ames, Iowa

2010

Copyright © Samyukta Soothram, 2010. All rights reserved.

www.manaraa.com

ii

 DEDICATION

I dedicate this thesis to my mother, Mrs. S.Subhadra and my father, Mr.S.V Ramana

for valuing education enough to get me where I am today. Their support and words of

wisdom helped me to complete this work. I would also like to thank my brother, Anurag and

my grandfather, Mr.T.N.Sethumadhavan for their constant motivation and encouragement

during my graduate student life.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES v

LIST OF TABLES vi

ABSTRACT vii

CHAPTER 1 INTRODUCTION 1

1.1 Motivation 3

1.2 Summary Problem Statement 4

CHAPTER 2 LITERATURE REVIEW 6

2.1 Modularization 6

2.2 Coupling 9

CHAPTER 3 RESEARCH METHODOLOGY 13

3.1 Research Description 14

3.2 Quantifying Coupling 15

3.3 Research Technologies 21

3.3.1 Optimization and Linear Programming 22

3.3.2 Linear Programming in this research 22

3.3.3 Premium Solver: Linear Programming tool 25

3.3.4 Cluster Analysis 25

3.3.5 Cluster Analysis in this Research 27

3.3.6 SAS: Clustering Tool 30

CHAPTER 4 RESULT ANALYSIS 33

www.manaraa.com

iv

4.1 Inferences 35

4.1.1 Inference #1 35

4.2.2 Inference #2 37

4.4.3 Inference #3 38

4.4.4 Inference #4 41

CHAPTER 5 CONCLUSION 42

5.1 Contribution of this research 42

5.2 Practical Significance 42

APPENDIX 44

BIBLIOGRAPHY 46

ACKNOWLEDGEMENTS 50

www.manaraa.com

v

LIST OF FIGURES

Figure 1 SAS agglomerative clustering result for a system containing 5 modules 30

Figure 2 SAS partitional clustering result for a system containing 5 modules 31

Figure 3 Module assignment results for system containing 5 modules 35

Figure 4 Percentage closeness in objective function value: Clustering Vs LP 37

Figure 5 Percentage difference in objective function value: Clustering Vs LP 38

Figure 6 Percentage difference in objective function value: Transformation

techniques Vs LP 39

Figure 7 Module assignment results for system containing 10 modules 44

Figure 8 Module assignment results for system containing 15 modules 45

www.manaraa.com

vi

LIST OF TABLES

Table 1 Coupling Categories and Weights 21

Table 2 Example of Module Assignments into groups 23

Table 3 Sample interdependence matrix for a system containing 5 modules 28

Table 4 Sample distance matrix using linear translation for a system containing 5

modules 29

Table 5 Sample distance matrix using direct inverse for a system containing 5

modules 29

Table 6 Sample interdependence matrix for a system containing 5 modules (upper

half matrix) 33

Table 7 Increase in binary constraints with module count 34

Table 8 Percentage closeness in objective function value: Clustering Vs LP 36

Table 9 Percentage difference in objective function value: Clustering Vs LP 37

Table 10 Percentage difference in objective function value: Transformation

techniques Vs LP 39

www.manaraa.com

vii

ABSTRACT

This research examines the problem of assigning software development tasks to

teams. The goal of this study is to model the most efficient way of module assignments in

order to reduce the communication and coordination delays among software teams that arise

from the improper distribution of software modules. The study quantifies the module

interactions using software coupling design measure and models these interactions using

Linear Programming and Cluster Analysis techniques. The performance of the two

techniques is evaluated to find the one that offers the most favorable set of module

assignments that can be used by software practitioners in the real world. The results obtained

from this research suggest that though Linear Programming is the most optimal technique for

obtaining the solution, it cannot provide solutions for large problems. With an increase in the

number of modules, the computational time required for Linear Programming model

increased considerably. Cluster Analysis, on the other hand, provided solutions which were

not as optimal as Linear Programming but generated module assignments for large module

count problems. Two types of Cluster Analysis techniques, namely agglomerative clustering

and partitional clustering were implemented in this research. Of the two, agglomerative

cluster analysis technique offered the most efficient and practical solution for module

assignments. This research is an attempt to improve the decision making capabilities of

software practitioners who often make use of intuitions and their past experiences in the

process of assigning modules to software development teams.

www.manaraa.com

1

CHAPTER 1 INTRODUCTION

An Information System can be defined as an aggregation of practices and

methodologies to translate data into information and knowledge that is useful to

organizations and/or other entities. An Information Systems development life cycle refers to

the process of evolution of the information system and consists of four phases- planning,

analysis, design and implementation. This research focuses on the design phase of the

Information Systems development life cycle.

Software design defines how the system functions by determining the hardware,

software and network infrastructure required for operation (Alan Dennis, 2005).The software

design activity starts with structuring high-level system design platform, system architecture,

deployment environment, hardware and software resource requirements and extends to finer

details such as module design, data flow, communication flow and so on. Technological

innovations, evolving programming models and complex development environments have

altered the traditional methods of software design used by practitioners. One of the software

design approaches that have been inherently used is the structured design approach that

advocates the philosophy of configuring an information system as a set of components. Each

component is structured to address at least one of the functionalities of the information

system. The collection of all components constitutes the information system as a whole.

Structured design refers to the “art of designing the components of a system and the

interrelationship between those components in the best possible way”(Edward Yourdon,

1975). Structured design can be implemented by dividing software code into discrete

functional units known as modules, based on the similarity of purpose and commonality of

data. The modular structure of software results in some immediate benefits such as ease of

implementation, efficient maintenance and reduced cost of modification. The cost of

implementing an information system with modular design minimizes system faults and

www.manaraa.com

2

system costs because the parts of problem(s) to be handled become small and solvable

separately (Edward Yourdon, 1975).

A module represents the basic work item of an information system design. A module

can be tailored to represent a subsystem, an object or a class. In object oriented systems, a

module represents the smallest unit of code that can be developed independently. The object-

oriented software design approach involves designing modules by grouping the data and

processes such that they address at least one of the functional requirements of the software.

Once the modules have been determined, the next task in the design process is to allocate

these modules to different software teams so that they can be developed independently.

Though each module addresses certain functionality, since the software package is a

collection of all these individual modules, there is some level of dependency among the

modules. Even though the modules are developed individually, they cannot operate in

complete isolation. The interdependency among modules complicates the task of

disconnected software development since dependent modules share data, memory and/or

processes. In order to deal with the module interdependencies, constant communication and

coordination between teams is required. The absence of effective communication can lead to

inefficient software development.

Managing functional dependencies between modules during early stages of software

design ensures better software quality (Hung-Fu & Lu, 2009) . The goal of this effort is to

construct a methodology that can be used by software practitioners for assigning software

modules (development work items) across concurrent development teams. This will

streamline communication flow across teams and allow software development projects to be

completed faster, and with a lower risk of project failures.

www.manaraa.com

3

1.1 Motivation

Though the concept of structured design has been around in the industry for few

decades, the dawn of globalization has added a new dimension to the validity and

significance of this approach. Globalization has resulted in geographically distributed

development sites, creating new challenges and complexities for software practitioners.

Dynamic business needs and availability of resources have changed the structure of software

production. The nature of global software projects has led to distributed development sites

(Mockus & Weiss, 2001), with several remotely located teams, placing high demands on the

level of communication and coordination. It is highly challenging to configure and control

the organizational makeup of software teams. Improper communication and collaboration

result in negative productivity and longer production intervals.

Practices influencing research and proven methodologies (Damian & Moitra, 2006)

have helped in cultivating global software development. Quantitative research (Damian &

Moitra, 2006) has shown that work items in distributed environments appear to consume

larger chunks of time, about 2.5 times of time required for completion of work items which

are developed together at one site. Delays in productivity can be attributed to glitches caused

by lack of communication and coordination, along with the complexity and size of the

project (Bin et al., 2007).

The software design activity for distributed environments is ingenious. Software

managers often determine the distribution of software module designs to development teams

based on the assignment decisions made in past projects and their intuition. Developing an

optimal methodology of partitioning modules in a software package improves the decision

making capability of software managers. It helps them in comparing their learning,

knowledge of work item (module) distribution and intuition with the scientific approach

www.manaraa.com

4

developed as a part of this study. The benefits of the software modules partitioning

techniques proposed in this research include

 practical and optimal module assignment logic,

 reduced communication and collaboration delays with respect to software

development within and across teams,

 increased productivity in distributed software development environments,

 improved management of shared data and processes in a software project and

 increased accountability of developers for the assigned modules

Coupling is a software design measure that assesses the strength of the

interconnection or the extent of dependency between modules. It reflects how much change

is required in one module, after changing some other module in the system. Module coupling

helps in determining understandability, testability, maintainability and reliability of software

(Hla Myat, Nan Si, & Ni Lar, 2005).

While proposing software design, the aim is to develop a system consisting of loosely

coupled modules. Such design provides the advantage of manipulating a module without

disturbing much of the configuration of other modules in the set (collection of modules,

software package). This research is based on the theory of coupling and its application in the

partition of software modules.

1.2 Summary Problem Statement

The primary objective of this research is to devise an efficient technique for grouping

software modules with an aim of assigning these modules across development teams. Object-

oriented systems form the environment and software modules constitute the variables

monitored as part of this study. Literature search in the field of modularization and coupling

reveals that no methodology has been developed in the area of software engineering to help

www.manaraa.com

5

practitioners in optimal decision making process of allotting the software modules (software

development tasks) to teams. The research questions that need to be addressed are:

 What are the efficient techniques for partitioning software modules?

 How can these techniques be implemented?

 Which technique offers the best solution?

Linear Programming and cluster analysis are examined as the techniques for

partitioning software modules. Linear Programming approach can produce optimal grouping

of modules while cluster analysis offers a fast heuristic approach. The results from both these

approaches are examined to find the optimal and practical solution that can be used in the

real world by software practitioners. The results from this research can be used in distributed

software development environments to aid software productivity and reduce communication

setbacks.

www.manaraa.com

6

CHAPTER 2 LITERATURE REVIEW

This section summarizes the literature study conducted for formulating the research

methodology.

2.1 Modularization

Modularization is the main characteristic of modern business applications. It is a

technique of separating software code into chunks of „domain modules‟ (Sarkar et al., 2009)

such that interactions among modules is minimized. Frequent changes, upgrades and

maintenance in requirements due to evolving markets and varying customer preferences

result in the need for flexible and comprehensible systems (Parnas, 1972), where every

domain module can be changed without a need to change other modules and every module in

the software can be studied one at a time. System modularization does not imply random

division of a system into modules instead; it involves a well-defined approach to generate

segments which are meaningful in isolation and also communicate with other modules in the

system. Such modules simplify reassembly, replacement and other maintenance activities

without a need for changing the whole system. Thus, modularization of software helps in

achieving maintainability and flexibility.

A domain module is a basic functional unit of software development and maintenance

(David, Gerald, & Frank, 1985). A module is the fundamental component of any structured

software design. By configuration, a module can be a subsystem or a set of data and

processes wrapped together. Several modules may share all or part of data and processes. A

good module (Sarkar et al., 2009) provides access to data and processes which satisfy a

specific functional requirement. The extent to which data and processes are shared among

modules, determines the extent of interdependency between those modules.

www.manaraa.com

7

The definition of module can be manipulated to fit into different levels of software

design. At high-level of software design, a module can assume the meaning of a sub-system

or any other high-level functional unit of an information system whereas at low-level of

software design, a module can be a class, an object or a collection of these. Successful

attempts have been made in implementing modularization at high level design as well as

decomposing modules into sub-modules (Michael & David, 1996) to facilitate convenient

reuse and remodeling.

The guidelines for modularization discussed in literature (David et al., 1985; Parnas,

1972; Sarkar et al., 2009) are similar but the approaches differ in the way they are

implemented. One of the approaches examines modularization at two levels (Parnas, 1972);

first wherein the module design is based on the structure of software design flowchart and the

second that is based on „information hiding‟, wherein the modules are generated such that the

information within a module is hidden from other modules. Modularization based on

flowchart might be easy to achieve since there is little transparency in the flow of data and

inter-module procedural calls but it does not capture the difficult design decisions. Thus,

modules should be designed based on the data and collection of code and not the steps

corresponding to the flowchart (Parnas, 1972). Modularization based on relaxing the

standards of information hiding (Michael & David, 1996) limits every sub-module

component to one design choice such as data structure, data type and time of binding, etc.

Such decompositions promote the idea of limiting the module to a fewer number of

decisions (Garlan, Allen, & Ockerbloom, 2009; Kiczales, 1996).

The goal of managing dependencies is essential to modularization. The process of

software design needs to be carefully implemented in order to identify and create modules

that manage dependencies and provide traceability. The Axiomatic Design approach (Hung-

Fu & Lu, 2009) helps in tracing the different design decisions by constraining the number of

decisions and dependencies that should exist as a part of good software design.

www.manaraa.com

8

One of the recent approaches to modularization suggests a three-layered architecture

for examining modularization: application, domain and infrastructure (Sarkar et al., 2009).

The modules are formed such that they serve as access points to all the three layers of a

business application. Each layer consists of modules that provide specific functionality. This

approach limits the direction of communication among modules. The modules within a layer

are designed to communicate with other modules in the same layer using an application

program interface. The modules residing in the upper layers of the system design can

communicate directly with the modules in the lower layers. However, the modules in the

lower layer should be designed in such a way that they cannot communicate with modules in

the higher layers.

The literature study on modularization reveals that the primary challenge in

modularizing applications is in finalizing the criteria consisting of an appropriate mix of

module strength, module size, information hiding and design decisions. Although smaller

module size costs more than larger module size (David et al., 1985), choosing only module

size is the least convincing strategy for optimal modularization. The resultant set of modules

in every structured design initiative should have minimal fault rate and low cost. A great

responsibility lies with the developers in implementing the modular design structure to

ensure that the benefits of modularization, evident in the software design are carried forward

in their entirety and remain valid in the software implementation phase as well. Module size

and module strength should always be considered in parallel while modularizing the system.

This will not only ensure lower cost but also lower fault-rates, provided the programmers are

suitably encouraged to write high-strength modules. The real test of modularization lies in

striking a balance between module strength and information hiding. Hence, practitioners

need to put in a lot of effort to propose a structured software design that satisfies all

modularization principles.

www.manaraa.com

9

2.2 Coupling

Coad and Yourdon (Yourdon, 1991), define a good software design as “one that

balances trade-offs to minimize the total cost of the system over its entire lifetime”. Software

design quality in an object-oriented system can be evaluated using a pre-defined set of

criteria. The set of criteria primarily consist of coupling and cohesion (Alan Dennis,

2005).While coupling measures the interdependency between modules, cohesion measures

the closeness of the processing elements of the modules data and functions taken together.

Coupling exposes the visibility of interactions among various modules of the system.

It helps in identifying and understanding the set of modules that would be impacted together,

due to high degree of dependency. In case a change is required in one module, coupling

allows identification of those modules that need to be changed in order to maintain the

software system design. Consider two modules under observation, Module A and Module B.

Module A is said to be tightly-coupled with Module B if Module A is highly dependent on

Module B and vice-versa. This implies that changes in Module A can cause significant

changes in Module B. Thus in order to understand the functioning of Module A, the

functioning of module B should be known.

The degree of coupling is directly proportional to the extent of interactions among

modules. The magnitude of coupling can be specified in quantitative as well as qualitative

terms. The stronger is the interaction among modules, the higher is the degree of coupling;

and the weaker is the interaction among modules, the lower is the coupling. The cost of

developing a modular software system is largely determined by the existence of the type of

coupling and the extent of coupling between modules (Edward Yourdon, 1975; Mockus &

Weiss, 2001).

There exists a conflict between the opinions of software engineering gurus and

practitioners when it comes to identifying the modularization drivers. Related work in this

www.manaraa.com

10

area (Brito e Abreu & Goulao, 2001) suggests the existence of other design criteria (semantic

organization) apart from coupling and cohesion, which serve as modularization drivers and

are more convincing to the practitioners.

The debate in identifying modularization drivers might place relatively less weight on

coupling and cohesion as the panacea, but these measures help in predicting the behavior of

the modules. In modular systems, there is a need to clearly understand the direction of

information flow, the frequency of communication, the amount and type of shared data,

common processes etc. These factors influence the performance of the system. Efficient

design includes benefits derived from coupling and cohesion. Since this research examines

the issue of partitioning software modules, it makes use of only coupling to model the

software module assignments.

Research studies prove that coupling and cohesion should be examined together and

not in isolation in the context of software maintenance (Darcy, Kemerer, Slaughter, &

Tomayko, 2005). Wood‟s task complexity model offers a solution to capture coupling

complexity by accounting for the sources of task complexity, namely component,

coordinative and dynamic. Though coupling and cohesion are two different structural

complexity measures, there exists an „interaction term‟ (Darcy et al., 2005) that associates

coupling and cohesion and helps in better understanding of each program unit in terms of

design, development and maintenance.

Since this study focuses on determining module assignments to teams based on the

interactions between modules, it is assumed that excluding cohesion design metric will not

lead to biased results. Coupling strengths between modules forms the basis of this research.

One of the prime cost reduction targets of the traditional SDLC model (Software

Development Life Cycle) is the software development phase. The costs of development are

directly affected by the software design, skills of software developers and the resources

allocated for development (infrastructure, time to go-live, etc). Better designs lead to better

www.manaraa.com

11

performance and economical budget allocations. Downstream phases in SDLC are directly

impacted by the decisions taken in the upstream. After requirements gathering, software

design is the next most important phase of SDLC. Subsequent phases of SDLC base their

assessments and performance out of phase. Continuous refinement of the decisions made in

the software design phase is imperative for identifying opportunities for cost reduction and

for system improvement opportunities.

Poisson regression models (Briand & Wust, 2001) using coupling, cohesion and class

size have been used in determining the software development efforts. Coupling and cohesion

explain development effort to a limited extent. The main driver for development effort was

found to be class size. The management of coupling (Cain & McCrindle, 2002) in the

software design helps in improving team dynamics and system productivity. When software

is being developed by teams, it is important to understand the distribution of tasks and

module development plans in order to ensure good structured software system. This study

focuses on coupling and examines how it influences the module assignments in the process

of software development and improves the productivity of the system.

The structure of teams helps in improving and accelerating the development of any

project under observation. Clustering techniques (Paul & Jack, 2000) have been used

successfully in the allocation of tasks for concurrent teams operating in the engineering

domain. The task allocation approach used for engineering teams cannot be directly applied

to software teams because of the difference in the nature of engineering tasks and software

development tasks.

Cluster analysis (Brito e Abreu, Pereira, & Sousa, 2000) has been used to account for

the quality of modularization in software systems. Cluster analysis can be used to group

modules into distinct clusters. Each cluster consisting of finite set of modules can be

allocated to different software development teams. Such task assignment helps in reducing

communication and coordination glitches across teams.

www.manaraa.com

12

The literature review suggests the need to improve quality, performance and

productivity of software systems using design criteria, predominantly coupling, since it

classifies modules based on their interactions with other modules in the system. This study

focuses on areas not explored by previous research and formulates methodologies that

partition modules into different groups. It uses clustering and Linear Programming

techniques to group modules into clusters such that highly interactive modules are grouped in

one cluster.

www.manaraa.com

13

CHAPTER 3 RESEARCH METHODOLOGY

The aim of this study is to devise a methodology for optimal classification of modules

into groups depending on the strength of module interactions. The modules are partitioned

such that the modules which are highly dependent on each other are grouped into a single

cluster and modules in one cluster are less dependent on modules of the other cluster. The

problem formulation for the research involves addressing the following goals:

 developing efficient techniques for grouping software modules by preserving

software design policy of reduced coupling and enhanced cohesion among

modules, and

 comparing the suggested techniques in order to find the most feasible

technique that can be implemented by software practitioners to solve large

scale module assignment problems

The steps that were followed in order to realize the goals mentioned above are as

follows:

 identifying modular software systems and quantifying the coupling data

between modules,

 investigating the traditional techniques to classify/group data observations,

 modifying the traditional methods to suit the needs of the research problem,

 generating the sample data for the research,

 comparing the results by applying different techniques to sample data, and

 suggesting the most optimal method for use in real world

The results obtained from this research are expected to help software practitioners in

assigning the software modules to development teams such that the communication and

coordination delays arising across teams due to improper assignments are reduced resulting

in quicker development cycles.

www.manaraa.com

14

3.1 Research Description

This research is specifically targeted at modular systems developed as a part of

object-oriented system design. This research issue of module assignments is handled by

considering initially, a system composed of a small set of modules. To start with a module

count of 5 is considered for formulating the partition methodology. This was done with the

purpose of ease of problem formulation for a smaller module count. The module count is

gradually increased till the stage where results could be easily computed using Linear

Programming and Clustering. The limit on the highest number of modules considered for this

research reflects the complexity of the research issue and the extent of difficulty in modeling

and achieving the most favorable module assignments.

As mentioned in the previous sections, coupling can be applied at different levels of

system design; module, class, sub-system etc. In this research, coupling is studied at module

level, though it can be extended to class or sub-system level. A change in the level of

coupling changes the method of quantifying coupling coefficients. The methodology

suggested in this paper for module partition can be applied directly to scenarios using

coupling at different levels since the suggested methodology is independent of the coupling

level under observation.

The coupling coefficients are used as inputs for this research. Coupling coefficients

are calculated depending on the coupling categories and their designated weight schemes. If

coupling is examined at a different level of software design, apart from module level, such as

sub-system etc then the scheme used in this research for calculating coupling coefficient

cannot be applied directly. In such cases a new method of measuring coupling coefficient

capturing is required.

The output of the research consists of subsets or groups of modules. The groups

combine highly related modules together. The research ensures that the module assignments

www.manaraa.com

15

generated in the output preserve the software design philosophy of low coupling. At the

higher level of system design, the proposed method can be modified to study the optimal

groupings of sub-systems which could be developed together, while at lower level of system

design, the proposed method can be used to identify the classes which should be developed

together by teams present at same work location. The steps undertaken for conducting this

research are listed in the sequential order:

 preparing the interdependence matrix,

 transforming the interdependence matrix into distance matrix,

 obtaining the Linear Programming results(objective function value and

grouping assignments) by using interdependence matrix as an input to the

Linear Programming model (solved by Premium Solver excel add-in),

 computing the clusters using SAS program by using distance matrix as input,

 testing for the objective function value by plugging in the cluster results

(grouping assignments) derived from SAS, and

 comparing the change in objective function value and group assignments for

Linear Programming and Clustering

3.2 Quantifying Coupling

Measuring the quality of software design is essential for building a robust Information

System. Estimating software quality from software design helps in avoiding expenses that

result from bad architecture or design of the software systems. Post implementation changes

demand huge investments. Software design offers a good platform to estimate the system

performance.

Software design quality is examined by identifying the components that make up the

system and understanding the interrelationships between the modules. The interrelationship

between modules exposes the frequency of interactions, type of data movement (call-by-

www.manaraa.com

16

reference, call-by-value etc) between modules, locus of impact (Offutt, Abdurazik, &

Schach, 2008), relationship between modules and other interaction details. The information

on these interactions and interrelationships is well-captured by coupling. Coupling-based

structural metrics involve examination of the quality of coupling as a design measure.

The approach for measuring software design quality using coupling has evidenced

significant changes. Literature review on the measurement of software quality suggests a

change in the level at which coupling is examined. The common principle of measuring

software design quality is to examine the call traffic between modules (using graphs and sub-

graphs). However, the approaches of measuring software design quality differ in levels at

which coupling is studied. The design measures overlap in dimensions of quality

measurement (Lionel, Jurgen, John, & Porter, 2000). The measures coincide to predict the

same set of quality attributes of a software design.

Before proceeding with the measurement of coupling-based software quality, it is

important to choose the level of coupling at which the quality metrics need to be defined;

class-level, system level, and/or Application Program Interface (API) level and so on.

Couplings can be studied at different levels; at module-level or API level (Sarkar, Rama, &

Kak, 2007) by segregating aspects of software design at architectural and structural level.

Techniques have been developed (Offutt et al., 2008) for evaluating coupling of classes that

are not exposed until runtime. These techniques analyze the source code to identify the

existence of coupling and to make use of criteria such as number of classes, types of coupling

to effectively construct the quality metric. The structural metrics that quantify coupling (for

modules residing in API Application Program Interface) and the mode in which they

communicate with different modules in the program reflect the evolving nature of software

architecture.

The quality of modularization at API level is affected by object-oriented design

characteristics such as inheritance, base-class design and others (Sarkar, Kak, & Rama,

www.manaraa.com

17

2008). The procedure for measuring the software quality design is carried out by identifying

and separating modules in the environment in which they exist and function. For example,

one of the methods that capture the coupling-based structural metrics includes examining the

modules that reside within an API by using „module interaction index‟ (Aruna, Devi, &

Deepa, 2008) that measure the frequency of interactions between modules within the API

with the ones outside the API.

All coupling measurements capture the strength of module interactions. This research

does not propose a theory for measuring module coupling but uses pre-existing

methodologies for quantifying coupling.

One of the ways of quantifying coupling is by measuring of the strength of

interconnections between modules (Edward Yourdon, 1975). The following three categories

measure the strength of module interconnections:

 Highly coupled,

 Loosely coupled, and

 Decoupled/No coupling

Two or more modules are said to be highly coupled if they have a strong degree of

interdependence. If modules are highly coupled then a change or maintenance activity in one

module will cause changes in other dependent modules. This increases software development

and maintenance problems and leads to poor software performance. The total cost of highly

coupled modular systems is high.

Loosely coupled modules are characterized by weak degree of interdependence.

Loosely coupled modules are less dependent on each other. This reduces the frequency of

communication. The level of interaction is less in loosely coupled modules as compared to

highly coupled modules. Loosely coupled modular systems reflect a good system design and

increase maintainability, flexibility and reliability levels.

www.manaraa.com

18

The modules in the decoupled/uncoupled modular structure do not interact. They

function independent to each other. Such modular design is difficult to incorporate in real

world applications. In scenarios wherein modules share data and processes, this modular

structure is not implemented.

Coupling can also be quantified based on the object-oriented properties of inheritance

and interaction (Yourdon, 1991). Inheritance is a feature of object-oriented programming

wherein new classes are formed using the pre-defined or existing classes. Inheritance

coupling measures the closeness of classes in the inheritance hierarchy. Problems with

inheritance are due to the features in object-oriented programming that help in violating

encapsulation and information hiding (Alan, 1986). Interaction coupling refers to the

coupling that exists due to the flow of data or messages between modules. It is the coupling

type that exists when the modules (methods or objects) communicate using message passing.

The Law of Demeter (Lieberherr & Holland, 1989) suggests minimizing the number of

interactions the module has with other modules in the program. The Law of Demeter states

that an object should send messages to only either itself, one of its superclasses, an object

that is passed as a parameter to a method, an object created by a method, or an object that is

stored in a global variable

Every case mentioned above increases the degree of interaction coupling which is not

considered healthy from a system design perspective. The six types of interaction coupling

(Jones, 1988; Myers, 1978), in the diminishing order of effect (good to bad) they have on

systems are:

 No direct coupling,

 Data coupling,

 Stamp coupling,

 Control coupling,

 Common or Global coupling, and

www.manaraa.com

19

 Content or Pathological coupling

No direct coupling is the highly desired type of coupling in which modules of the

system are not dependent on one another. Hence, there are no interactions among the

modules constituting the system. Data coupling is the type of coupling where one method

passes a variable to another method. The method that passes the variable is known as calling

method and the method that receives the variable is known as the called method. Stamp

coupling is a slight variation of data coupling. In data coupling, if the calling method passes a

composite variable to the called method then the called method uses the entire composite

variable to complete its function. However, in stamp coupling, only a portion of the

composite variable will be used by the called method. In Control coupling the value of the

control variable, passed by the calling method, determines the execution of the called

method. When the methods refer to a „common‟ or „global‟ data area then methods are said

to be common or globally coupled. Content or Pathological coupling is the least desirable

form of coupling. The concept of „friends‟ in object-oriented paradigm promotes the

philosophy wherein a method of one object can refer to hidden parts of another object.

Content or pathological coupling makes use of this feature.

The direction of information movement between modules influences interaction

coupling (Hla Myat et al., 2005). The two broad types of interaction coupling based on

direction of information flow are import coupling and export coupling. Import coupling

counts the messages received from modules whereas export coupling counts the messages

sent to modules. The broad categories of import and export coupling include call coupling,

scalar coupling, stamp coupling and tramp coupling.

This research uses coupling coefficients to group modules. The weights assigned to

coupling categories are nominal, limited to a scale of 0-5, 0 signifying least interdependence

and 5 signifying maximum interdependence. The coupling coefficients are quantified by

www.manaraa.com

20

considering the type of connection between modules, the complexity of interface, and the

type of information flow among the connection.

Two sub-types of connection between modules were identified, namely minimally

connected and normally connected. A minimally connected module has least level of

coupling and is the most desirable form of module design. Modules which are minimally

connected have least interdependency. A normally connected module is more coupled than

minimally connected module and is the least desirable form of module design. Modules

which are normally connected have high interdependency. A pathological connection is

established when a reference to an entity within a module originates from outside the

module. A good software design does not accommodate pathological connections in module

interactions. Thus, it is not considered for the purpose of this research.

The complexity of the interface is measured by the type of the parameter passing

method. When two or more modules interact there is exchange of data. This data can be

transferred from one module to another using different parameter passing methods such as

call by reference and call by value. An implicit reference is received in call by reference

parameter passing style and it demands a greater communication potential between the

interacting modules. Call by value, on the other hand, passes arguments using a copy of the

value, which limits the communication between the two interacting modules.

The frequency of the calling method determines the extent of use of the module in the

software package. The more the frequency of calling, the greater is the level of interactions.

If a module is called frequently by another module in the software package, then the

frequency of interaction of this module pair is considered to be high.

When two modules interact, there is flow of information; data and/or control. This

feature of module interaction was assigned weights depending on the most desirable to least

desirable form of coupling interaction. The types of interaction couplings quantified for this

research are data coupling, control coupling and common coupling. If one or all of the

www.manaraa.com

21

contents of one module are included in the contents of another then it is known as content

coupling. It is least desirable form of module interaction design. It is assumed that the

modules under observation for the purpose of the research align with the guidelines of a good

software design; hence this form of coupling is not quantified in this research.

Binding time accounts for the nature and time when symbolic data references are

converted into physical machine addresses. If this conversion occurs at compile time then it

is known as compile time binding and if it is done at execution time then it is known as

execution time binding. With compile time binding, the inter-modular reference is fixed at

compile time which leads to stronger reference coupling than execution or run time coupling

where the association are made at run time. Table 1 summarizes the coupling categories and

weights used in this research.

Table 1 Coupling Categories and Weights

Acronym Coupling Category Weight

MC Minimally connected 0

NC Normally connected 1

CR Call-by-reference 2

CV Call-by-value 1

FC Frequent calls 2

NFC Non-frequent calls 1

DC Data coupling 1
CC Control Coupling 2

CmC Common Coupling 3

CTB Compile Time Binding 2

RTB Run Time Binding 1

3.3 Research Technologies

The partitioning of software development modules into distinct groups was

implemented using Linear Programming and Cluster Analysis. This section describes how

these traditional methods were modeled to suit the research requirements.

www.manaraa.com

22

3.3.1 Optimization and Linear Programming

Optimization helps in making the most efficient use of available resources, under

defined set of operating environments. The philosophy of optimization rests on the principle

of choosing the best component from a set of available alternatives. Mathematical

programming is an optimization technique that helps in finding the optimal solution

(Anderson, 1994) with limited availability of resources in order to realize the objectives of an

individual or a business (T.Ragsdale, 2007).

The approach to any optimization problem involves considering the following issues:

 The objective that determines the goal that is considered while determining

the best alternative,

 The decisions that need to be made to realize the goal, and

 The constraints that limit the use of resources that are available to realize the

goal

3.3.2 Linear Programming in this research

Linear Programming (LP), one of the mathematical programming techniques, solves

optimization problems using linear objective functions and linear constraints. Formulating a

Linear Programming model involves expressing the optimization function algebraically, by

specifying the objective function, decision variables and the constraints. The steps in

formulating the Linear Programming problem as adopted from (T.Ragsdale, 2007) for this

research include the following:

 understanding the problem,

 identifying the decision variables,

 stating the objective function as a linear combination of decision variables,

 stating the constraints as a linear combination of decision variables, and

 identifying any upper and lower bounds on the decision variables

www.manaraa.com

23

The problem in this research is to calculate the best possible way in which the

software modules can be grouped. The decision variables in this research are found to

indicate the assignment of the modules in same or different groups. Binary decision variables

are used in this research, a value of 1 indicating module assignments in the same group and a

value of 0 indicating module assignments in different groups. The objective function for this

research is formulated using the interdependence index (interdependence value) for each

module pair. The objective is to maximize the product of decision variable Xij and the

interdependence index Cij for all possible module pair combinations. The constraints for this

research are designed to obey the software design rules of modular coupling. Consider a

scenario with three modules, module i, module j and module k. Let Xij, Xjk and Xik be the

decision variables denoting the group assignments among modules i, j and k, then the

maximum combinations of group assignments are as shown below

Table 2 Example of Module Assignments into groups

Xij Xjk Xik Module i and j Module j and k Module i and k

1 1 1 Same Group Same Group Same Group

0 0 0 Different Group Different Group Different Group

1 1 0 Same Group Same Group Different Group

1 0 1 Same Group Different Group Same Group

0 1 1 Different Group Same Group Same Group

1 0 0 Same Group Different Group Different Group

0 1 0 Different Group Same Group Different Group

0 0 1 Different Group Different Group Same Group

The rows indicate in bold denote assignments which are illegal and cannot become a

part of module assignment logic. This is because they do not obey the law of transitive

relationship. Consider Module A, Module B and Module C. If Module A and Module B are

in one group, Module B and Module C are in one group then Module A and Module C

should also be in the same group. If this law of transitivity is not obeyed then such module

assignments are illegal and cannot be implemented in the model. These illegal module

www.manaraa.com

24

assignments are the constraints for this research. In order to limit the number of module

assignments per group, upper and lower bounds for this research are identified. Lower bound

specifies the minimum number of modules that can exist in a group and upper specifies the

maximum number of modules per group.

The Linear Programming model that is formulated for this research is described

below:

Consider

Let V = {1, 2, …, n} be the finite set of modules to be grouped, cij (j > i) be the

interdependence index of modules i and j, xij (j > i) be the decision variable indicating the

grouping assignment (1 if i and j are in the same group, 0 otherwise), and l and u be the lower

and upper bounds, respectively, of the number of modules to be included in each group. The

linear integer programming formulation can be written as:

ij

ijij

nVi

xc maximize
}\{

 (1)

subject to:

 ijnVixij },{\ }1,0{ ; (2)

 Vilxx
ij

ij

ki

ik 1 ; (3)

 Viuxx
ij

ij

ki

ik 1 ; (4)

 jkijnnVi

xxx

xxx

xxx

jkikij

jkikij

jkikij

, },1,{\

1

1

1

; (5)

The number of decision variables and the number of constraints are given by (6) and

(7) below (note: integer (binary) constraints are not included in (7), which is given by (6)):

www.manaraa.com

25

2

2 nn
; (6)

!)3(!3

!3
2

n

n
n ; (7)

The number of constraints (3) and (4) each is given by n, and the number of

constraints (5) is given by Cn,3, where Cn,3 combination of n objects taken 3 at a time.

3.3.3 Premium Solver: Linear Programming tool

The research made use of the in-built Excel Solver add-in to model computations for

smaller module counts. But the computational limitations of the in-built Excel Solver add-in

prompted the use of a more powerful tool that would solve problems with large number of

constraints and computations in a lesser time frame. For this purpose, the research made use

of Premium Solver provided by Frontline System, Inc ("Solver.com," 2009). The Excel

Solver PSP 7.0 Education version is used as Excel add-in to solve the Linear Programming

model of this research.

3.3.4 Cluster Analysis

Cluster analysis is defined as the procedure of partitioning data objects (C.Wunsch,

2009) into required number of clusters. Cluster analysis does not refer to a single method of

partitioning data but refers to a wide range of algorithms. A cluster is a group or subset

consisting of the data objects under observation. The goals of cluster analysis can be

summarized (Blashfield, 1984) as follows:

 developing a classification,

 investigating schemes for grouping entities,

 generating hypothesis through data expression, and

 determining if the types defined through other procedures are present in a data

set

www.manaraa.com

26

The cluster analysis is performed in four steps. The first step in cluster analysis is

feature selection or feature extraction. While both the terms are used interchangeably across

the clustering literature, there exists a subtle difference between the two. Feature selection

uses the distinguishing features from a set of candidates (observations) to perform cluster

analysis (Jain, Duin, & Jianchang, 2000; Jain, Murty, & Flynn, 1999) while feature

extraction generates features that uniquely identify the observations. Feature selection is very

important for realizing the effectiveness of the clustering algorithm that is implemented. Any

defect or error in choosing the features has a negative impact on the clustering results. The

selected features should provide a clear understanding of the data, since the feature that is

selected serves as the basis for cluster formation. The features of the data observations are

used for classifying the observations into distinct sets.

The second step in clustering analysis is the selection of the clustering algorithm.

This step involves formulating the proximity measure and criterion function. The proximity

measure is used to define the method of determining the closeness or belongingness of

observations. The criterion function helps in generating the clusters by making use of the

proximity measures.

The selection of clustering algorithm is followed by the cluster validation procedure.

Cluster analysis always leads to a definite set of clusters by partitioning the data but there is a

need to examine the significance of the clusters that are formed as a result of the clustering

algorithm. If the clustering algorithm leads to cluster formations which are not meaningful

and/or do not offer easy interpretation, then the clustering algorithm needs to be altered.

Thus, cluster validation is an important step which aids the comparison of results from

multiple clustering algorithms to find out the one that best reveals the characteristics of

objects.

The final step in the cluster analysis process is the result interpretation. This process

helps in drawing meaningful insights from the original data. A cluster does not convey

www.manaraa.com

27

results in itself. It is a mere group of the original set of data observations. Hence, post cluster

formation, a judicious interpretation of the cluster results is required. The set of cluster is not

considered as “a finished result but only a possible outline” (Anderberg.M, 1973).

Clustering analysis requires repeated trials and use of different algorithms to obtain

the best resultant clusters. The primary reason for this is the lack of ability of a single

clustering algorithm to generate optimal results with different sets of data. In order to find the

most efficient solution, different clustering algorithms are implemented in this research.

3.3.5 Cluster Analysis in this Research

The clustering techniques that are examined in this research are partitional clustering

and agglomerative hierarchical clustering. While partitional clustering divides the data into a

pre-specified number of clusters, agglomerative hierarchical clustering results in clusters

with a sequence of nested partitions. Of all the types of agglomerative hierarchical clustering,

average link method is used to form the clusters, since it is used in scenarios where the

objects are similar in their interactions. The average link method uses the average distances

between all possible pairings of objects and results in compact clusters. The results from both

the techniques are compared to suggest the most favorable technique.

The proximity matrix, for both the clustering techniques, is developed using the

coupling coefficients. Coupling coefficients provide a way of denoting the strength of

interdependence between modules. The coupling coefficient matrix that is formulated in this

research for each module pair is referred to as the „interdependence matrix‟. Both partitional

clustering and agglomerative clustering techniques, calculate the distance between the data

points (observations) and group the observations based on the distances between the

individual observations and the clusters. The formation of pair of cluster(s) is defined by the

distance function between the clusters or the individual observations. The interdependence

matrix contains coupling coefficient data. The interdependence matrix is not used directly for

www.manaraa.com

28

cluster analysis since it does not provide the correct measure of distance between module

pairs. A sample interdependence matrix for a software system consisting of 5 modules is

shown in Table 3.

Table 3 Sample interdependence matrix for a system containing 5 modules

Module One Two Three Four Five

1 0 1 2 0 5

2 1 0 4 5 3

3 2 4 0 4 2

4 0 5 4 0 1

5 5 3 2 1 0

Consider two modules from Table 3; module 1 and module 5. The coupling

coefficient for this pair of module is 5, which implies that module 1 is highly coupled with

module 5 and hence these modules should be present in one cluster. If the interdependence

matrix is directly used in cluster analysis, then a value of 5 will indicate greater distance

between module 1 and module 5 leading to the placement of both the modules into separate

clusters. In order to avoid this, the research proposes the conversion of interdependence

matrix into a matrix suitable for use by the clustering methods, referred to as „distance

matrix‟. The distance matrix consists of values that can be used directly as input to the

clustering method.

The conversion of interdependence matrix into distance matrix is done by using

transformation functions. The two transformation techniques that are implemented to

evaluate the clustering performance are linear translation and direct inverse.

Linear translation technique uses the highest weight assigned to the coupling

coefficient in the interdependence matrix to form the linear translation equation. The highest

weight is used as the reference for this transformation. The linear translation is done using

the following equation,

(-1) * x + (highest weight) = (-1) * x + 5

www.manaraa.com

29

The variable x denotes the coupling coefficient for a module pair obtained from

interdependence matrix. Table 4 shows the conversion of the sample interdependence matrix,

shown in Table 3, into distance matrix using linear translation.

Table 4 Sample distance matrix using linear translation for a system containing 5 modules

Module One Two Three Four Five

1 0 4 3 5 0

2 4 0 1 0 2

3 3 1 0 1 3

4 5 0 1 0 4

5 0 2 3 4 0

This research provides the flexibility for change in the weight scale. The highest

weight scale value can be changed depending on the highest coupling coefficient of the

module pair in the interdependence matrix.

Inverse Transformation is formulated using the equation,

(1/x)

The variable x denotes the coupling coefficient for a module pair obtained from

interdependence matrix. In situations where the coupling coefficient value is zero, the

resultant of inverse transformation is considered to be a large number (example 9999), since

1/0 is not defined. Table 5 shows the conversion of the sample interdependence matrix,

shown in Table 3, into distance matrix using direct inverse transformation.

Table 5 Sample distance matrix using direct inverse for a system containing 5 modules

Module One Two Three Four Five

1 0 1 0.5 99999 0.2

2 1 0 0.25 0.2 0.33

3 0.5 0.25 0 0.25 0.5

4 99999 0.2 0.25 0 1

5 0.2 0.33 0.5 1 0

www.manaraa.com

30

The transformation function is applied to each and every module pair value of the

interdependence matrix.

3.3.6 SAS: Clustering Tool

SAS version 9.2 is used for implementing the clustering procedures. The SAS 9.2

package offers clustering procedures to implement both hierarchical and disjoint clusters.

The VARCLUS procedure ("Overview: Clustering Procedures," 2010) is used to create

disjoint clusters and the CLUSTER procedure is used to generate agglomerative hierarchical

clusters.

SAS generates the output of hierarchical clustering in the form of a tree structure.

This research analyzed and divided (cut) the tree structure at suitable levels to form the

required number of clusters. A sample tree structure for a system consisting of 5 modules is

shown in Figure 1.

Figure 1 SAS agglomerative clustering result for a system containing 5 modules

A
v
e
r
a
g
e

D
i
s
t
a
n
c
e

B
e
t
w
e
e
n

C
l
u
s
t
e
r
s

0

2

4

6

8

Name of Observation or Cluster

OB1 OB5 OB2 OB3 OB4

www.manaraa.com

31

SAS produces the output of the partitional clustering procedure in the form a table

displaying the number of clusters generated and the members present in each cluster. The

table generated for sample system consisting of 5 modules using SAS partitional clustering is

shown in Figure 2.

Figure 2 SAS partitional clustering result for a system containing 5 modules

The R-square value of a variable in Figure 2 indicates how well separated it is from

the nearest cluster. The column labeled 1-R**2 Ratio in Figure 2 displays the ratio of (1-R-

squared with Own Cluster)/ (1-R-squared with Next Closest). Smaller values of 1-R**2 ratio

indicate good clustering.

SAS procedures are implemented for module count of 5, 10 and 15. The distance

matrix for cluster analysis is generated using linear translation and direct inverse

transformation. These matrices are then used as inputs for hierarchical and partitional

clustering algorithms. Since the SAS clustering procedures do not offer a direct method to

limit the number of members within a cluster, „maxclusters‟ feature that limits the number of

clusters being formed is used. The results from the clustering techniques are observed and the

lowest and highest number of members in each group is calculated. This count serves as the

upper bound and lower bound of the cluster. The upper bound refers to the maximum number

of members in a cluster and the lower bound refers to the minimum number of members in a

cluster. The upper bound and lower bound count obtained from clustering method is used as

www.manaraa.com

32

input to the Linear Programming model. The module assignments that are generated as a part

of the Linear Programming model; using this upper bound and lower bound values, are

compared with that of the module assignments suggested by clustering technique.

www.manaraa.com

33

CHAPTER 4 RESULT ANALYSIS

The quantitative data that is used for conducting this research is derived from the

coupling coefficients between each pair of modules. Coupling coefficients measure the

degree of coupling that exists between the pair of modules. Firstly, the coupling categories

are identified and each identified category is assigned a weight depending on the intensity of

the coupling (obtained from Table 1). Secondly, the cumulative weight is calculated by

adding all the coupling weights for the module pair. This aggregated weight is used as the

coupling coefficient between that module pair. This process is repeated for all the module

pair combinations. The coupling coefficients for module pairs are represented in a matrix

form (Refer Table 3). This serves as the sample data for the Linear Programming model. The

interdependence matrix consists of coupling coefficients for every module pair. The matrix

shown in Table 3 represents an example of interdependence matrix for a system consisting of

5 modules. The diagonal divides the interdependence matrix into two symmetrical halves.

Thus only the upper-half of the interdependence matrix (Refer Table 6) is used for

formulating the Linear Programming model.

Table 6 Sample interdependence matrix for a system containing 5 modules (upper half matrix)

Module One Two Three Four Five

1 1 2 0 5

2 4 5 3

3 4 4

4 1

5

The conversion of interdependence matrix into distance matrix, referred to as

transformation technique in this research, is essential for the purpose of clustering. Coupling

coefficients for module counts of 5, 10 and 15, is processed using Linear Programming and

clustering technique. Because of the long computational times required by the Linear

www.manaraa.com

34

Programming model, the maximum module count processed in this research was limited to

15. The number of binary constraints increases significantly with the number of modules and

this constrains the computational feasibility of the Linear Programming model to compute

the results. (Refer Table 7)

Table 7 Increase in binary constraints with module count

Module Size Number of Constraints

5 10

10 120

15 455

18 816

20 1140

25 2300

The module assignments are obtained using Linear Programming and Cluster

Analysis. These assignments obtained from both the techniques are compared on the basis of

the objective function values. The objective function values are compared based on the type

of clustering algorithm (partitional and agglomerative clustering) and transformation function

(linear translation and direct inverse). Figure 3 shows the results obtained from Linear

Programming and cluster analysis for a sample software system consisting of 5 modules. The

percentage closeness column is the objective function value obtained from SAS as a

percentage of objective function value obtained from Linear Programming (LP). For

example, 44.44% of the objective function value obtained from LP, which is 18, is equal to 8,

the objective function value obtained from SAS. The percentage closeness value is a measure

of how close the SAS result is to the result obtained from LP.

www.manaraa.com

35

Figure 3 Module assignment results for system containing 5 modules

Figure 7 and 8 in Appendix summarize the results obtained from Linear Programming

and cluster analysis for module counts of 10 and 15 respectively. The following section

summarizes the findings of this research.

4.1 Inferences

This section describes the inferences obtained by conducting this research.

4.1.1 Inference #1

The percentage closeness value measures how close the clustering results are to the

ones obtained from Linear Programming. It is observed from Table 8 that, on an average, the

percentage closeness of the agglomerative clustering technique is more than the partitional

clustering. Thus agglomerative clustering is more favorable over partitional clustering

technique for obtaining the optimal module assignments.

Transformation
Lower

Bound

Upper

Bound

Clusters
Objective

Function Value
%

Closeness
SAS LP SAS LP

Partitional Linear

Translation

2 3 1,2,4 2,3,4 8 18 44.44

3,5 1,5

1 2 1,5 1,5 10 10 100

2,4 2,4

3 3

Partitional Direct

Inverse

2 3 1,4,5 2,3,4 10 18 55.55

2,3 1,5

1 3 1,2,4 1,5 6 10 60

3 2,4

5 3

Agglomerative Linear

Translation

1 3 1,5 1,5 18 18 100

2,3,4 2,3,4

Agglomerative Direct

Inverse

1 3 1,4 1,5 9 18 50

2,3,5 2,3,4

www.manaraa.com

36

Table 8 Percentage closeness in objective function value: Clustering Vs LP

Module Size
Percentage Closeness in Objective Function Value

Partitional Clustering Agglomerative Clustering

5 44.00 100.00

 100.00 50.00

 55.55 -

 60.00 -

Average 64.89 75.00

10 81.01 95.77

 52.85 100.00

 63.04 44.89

 69.23 72.85

Average 66.53 78.38

15 72.28 100.00

 75.94 73.45

 53.90 90.96

 54.43 -

Average 64.14 88.14

Overall Average 65.19 80.50

Figure 4 shows a plot of percentage closeness in objective function value versus the

module count. As the module count value increases the percentage closeness of

agglomerative clustering technique increases. This implies that, as module count increases

agglomerative clustering partitions modules into groups which are more closely aligned to

Linear Programming module partitioning results.

www.manaraa.com

37

Figure 4 Percentage closeness in objective function value: Clustering Vs LP

4.2.2 Inference #2

Table 9 Percentage difference in objective function value: Clustering Vs LP

Module Size
Percentage Difference in Objective Function Value

Partitional Clustering Agglomerative Clustering

5 55.00 0.00

 0.00 50.00

 44.44 -

 40.00 -

Average 34.86 25.00

10 18.00 4.00

 47.00 0.00

 37.00 55.00

 31.00 27.00

Average 33.25 21.50

15 28.00 0.00

 24.00 27.00

 46.00 9.00

 46.00 -

Average 36.00 12.00

Overall Average 34.70 19.50

0%

20%

40%

60%

80%

100%

120%

140%

160%

5 10 15

P
er

ce
n

ta
g
e

C
lo

se
n

es
s

in
 O

b
je

ct
iv

e
F

u
n

ct
io

n
 V

al
u

e

Module Count

Agglomerative Clustering

Partitional Clustering

www.manaraa.com

38

The average value of the percentage difference in objective function decreases with

the increase in the number of modules for partitional clustering and agglomerative clustering.

The percentage difference measures the amount of change in objective function value of

clustering techniques with that of Linear Programming. Figure 4 shows a plot of percentage

difference in objective function value versus the module count. As the module count

increases the percentage difference of agglomerative clustering technique decreases more

rapidly as compared to partitional clustering. This implies that, as module count increases

agglomerative clustering generates module assignments which are more closely aligned to

Linear Programming results.

Figure 5 Percentage difference in objective function value: Clustering Vs LP

4.4.3 Inference #3

Table 10 shows that the change in the transformation function does not drastically

change the percentage difference in performance of the clustering techniques. Among the

two techniques, linear translation provides the lesser percentage difference in objective

function value; see Figure 5, when compared to direct inverse technique.

0%

5%

10%

15%

20%

25%

30%

35%

40%

5 10 15

P
er

ce
n

ta
g
e

D
if

fe
re

n
ce

 i
n

 O
b

je
ct

iv
e

F
u

n
ct

io
n

V
al

u
e

Module Count

Partitional Clustering

Agglomerative Clustering

www.manaraa.com

39

Table 10 Percentage difference in objective function value: Transformation techniques Vs LP

Module Size
Percentage Difference in Objective Function Value

Linear Translation Direct Inverse

5 55.00 44.00

 0.00 40.00

 0.00 50.00

Average 18.33 44.67

10 19.00 37.00

 47.00 31.00

 55.00 27.00

 0.00 -

Average 30.25 31.67

15 28.00 46.00

 24.00 46.00

 0.00 9.00

 27.00 -

Average 19.75 33.67

Overall Average 22.78 36.67

Thus linear translation is more suitable when an optimal solution is required.

Figure 6 Percentage difference in objective function value: Transformation techniques Vs LP

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15

P
er

ce
n

ta
g
e

D
if

fe
re

n
ce

 i
n

 O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
e

Module Count

Direct Inverse

Linear Translation

www.manaraa.com

40

Linear Programming model offers a method for obtaining the most favorable

(optimal) module assignments. Hence, the results obtained from clustering technique are

compared with that of the Linear Programming model. The objective function value of the

Linear Programming model acts a reference for measuring the performance of the clustering

technique. The percentage closeness in objective function value, shown in Table 8, and

percentage difference in objective function value, shown in Table 9, serve as the metrics for

comparing the closeness of results obtained from cluster analysis with that of Linear

Programming. The percentage closeness in objective function value is the cluster analysis

objective function value expressed as a percentage of the Linear Programming objective

function. The higher the percentage closeness value, the better is that clustering technique.

Table 10 displays the percentage difference values calculated from linear translation and

direct inverse transformation methods.

Cluster Analysis offers a heuristic approach to cluster generation while Linear

Programming model is a mathematical programming technique offering best solutions under

pre-defined set of operating conditions. Partitional clustering and agglomerative clustering

are the two cluster analysis techniques that were implemented in this research. The overall

average percentage closeness in objective function value of partitional clustering technique is

found to be approximately 67% and that of agglomerative clustering is found to be

approximately 80%. The overall average percentage difference in objective function value of

partitional clustering technique is found to be approximately 33% and that of agglomerative

clustering is found to be approximately 20%. The higher the value of percentage closeness

and the lower the value of percentage difference, the more favorable is the technique. Thus it

can be concluded that the results of agglomerative clustering match 80% of the group

assignments obtained from Linear Programming. This indicates that in situations where

Linear Programming model cannot be implemented for modeling group assignments,

www.manaraa.com

41

agglomerative clustering technique can act as a decent substitute to offer results that are 80%

optimal.

Agglomerative Clustering method performed better than partitional clustering method

to provide the optimal solution. This can be attributed to the difference in the proximity

measures that are used by each of the two techniques. The agglomerative clustering type

known as average link method is used in this research, which makes use of average distances

between observations, as the proximity measure while partitional clustering makes use of

actual distances. Since average distances between observations provide a better measure of

distances than actual distances, agglomerative clustering was found to provide better results

for module assignments than partitional clustering.

4.4.4 Inference #4

Table 7 shows the effect of increase in module count on the number of constraints.

Increasing constraints cause considerable increase in the computational time required for

providing the module assignment solution. Since, agglomerative clustering offers, a

reasonable solution to the problem at hand, and does not require higher computational time, it

can be used to implement the group assignments of software modules.

www.manaraa.com

42

CHAPTER 5 CONCLUSION

5.1 Contribution of this research

There exists a high degree of complexity in designing a model that would result in

optimal group assignments of software modules due to the large number of modules in real

world software applications and the constraints that limit the way these group assignments

can be realized. Practitioners have always acknowledged the importance of communication

and coordination in distributed software development team environments. Thus, in such

development environments, it is required that the modules assigned for development are such

that the demand for communication is minimal among the modules that are assigned in

geographically distributed teams for development. This research proposes a method that

could be used by the practitioners to implement the challenging task of dividing the set of

modules into groups for assignment to teams operating remotely.

Though this research suggests a method for optimal module assignments, the Linear

Programming model cannot be used for solving large problems hence the results obtained

from cluster analysis needs to be used. Clustering does not offer the best solution but, offers a

close to best solution for module assignments. As the module count increases, the Linear

Programming model cannot be used to solve the module assignment problem. Hence, this

research could not compare the Linear Programming model results with that of clustering

results for larger module counts.

5.2 Practical Significance

This research offers an important insight to the software practitioners on the way the

module assignments should be made. The benefits of using the methodologies offered as a

part of this research are:

www.manaraa.com

43

 optimal division of modules among software teams,

 reduced time to development,

 increased group dynamics and efficiency, and

 reduced inter-team dependency

This research results in opportunities that can be exploited to enhance the decision

making capabilities of software practitioners. The study focused on the module assignments

to development teams but did not take into consideration the following factors:

 the number of members within the team,

 the capabilities and skills of team members; which are considered to be equal

in this research, and

 the number of available teams and the influence of team hierarchical structure

on module assignments

The considerations mentioned above will significantly change the module

assignments in real world scenarios. The future work in this area will quantify each of the

considerations mentioned above and incorporate the same for modeling optimal module

partitioning logic in software environment.

www.manaraa.com

44

APPENDIX

Figure 7 Module assignment results for system containing 10 modules

Transformation
Lower

Bound

Upper

Bound

Clusters
Objective

Function Value
%

Closeness
SAS LP SAS LP

Partitional

Linear

Translation

3 7 3,4,6,7,8,9,10 2,4,5,6,8,9,10 64 79 81.01

1,2,5 1,3,7

2 5 3,6,8,9,10 1,3,5,6,7 37 70 52.85

1,2,5 2,4,8,9,10

4,7

Partitional

Direct Inverse

3 4 1,3,6,10 1,4,5 29 46 63.04

4,5,7 2,3,6,7

2,8,9 8,9,10

1 3 1,3,6 1,4,5 27 39 69.23

4,5,7 2,3,6

2,8,9 8,9,10

10 7

Agglomerative

Linear

Translation

4 6 1,3,4,5,6,7 1,2,4,8,9,10 68 71 95.77

2,8,9,10 3,5,6,7

3 4 1,5,4 1,4,5 47 47 100

3,6,7 2,8,9,10

2,8,9,10 3,6,7

1 4 1,5 1,4,5,6 22 49 44.89

4 2,8,9,10

7 3,7

3,6

2

8,9,10

Agglomerative

Direct Inverse

1 6 3,4,6,7,8,9 1,3,5,7 51 70 72.85

5 2,4,6,8,9,10

2

1

10

www.manaraa.com

45

Figure 8 Module assignment results for system containing 15 modules

Transformation
Lower

Bound

Upper

Bound

Clusters
Objective

Function Value
%

Closeness
SAS LP SAS LP

Partitional

Linear

Translation

5 10 1,2,3,7,8,9,10,12,13,15 1,2,4,5,6,9,11,12,13,14 120 166 72.28

 4,5,6,11,14 3,7,8,10,15

3 4 3,8,9,13 1,6,12,13 60 79 75.94

 4,5,11,14 2,5,9,11

 2,7,10,15 3,4,14

 1,6,12 7,8,10,15

Partitional

Direct Inverse

2 6 1,2,6,8,14,15 1,4,6,12,13,14 61 113 53.9

 4,7,11 2,5,9

9,12

3,5,10,13
3,7,8,10,11,15

3 4 2,8,14,15 1,6,12,13 43 79 54.43

 4,7,11 2,5,9,11

 9,12 3,4,14

 1,5,6 7,8,10,15

 3,10,13

Agglomerative

Linear

Translation

7 8 1,2,5,6,9,11,12,13 1,2,5,6,9,11,12,13 152 152 100

 3,4,7,8,10,14,15 3,4,7,8,10,14,15

2 6 1,12,13,6,5,11 1,4,6,12,13,14 83 113 73.45

 2,9 2,5,9

 3,7,15,8,10 3,7,8,10,11,15

 4,14

Agglomerative

Direct Inverse

1 10 1,2,6,9 1,2,4,5,6,9,11,12,13,14 151 166 90.96

 3,4,5,7,8,11,12,13,14,15 3,7,8,10,15

 10

www.manaraa.com

46

BIBLIOGRAPHY

Alan Dennis, B. H. W., David Tegarden. (2005). System Analysis and Design with UML

Version 2.0 An Object Oriented Approach

 (Second ed.). New Jersey: John Wiley & Sons, Inc

Alan, S. (1986). Encapsulation and inheritance in object-oriented programming languages.

Paper presented at the Conference proceedings on Object-oriented programming

systems, languages and applications.

Anderberg.M. (1973). Cluster Analysis for Applications. New York: Academic Press.

Anderson, S., Williams. (1994). An Introduction to Management Science: Quantitaive

Approaches to Decision Making. In (pp. 17). St.Paul,MN: West Publishing Company.

Aruna, M., Devi, M. P. S., & Deepa, M. (2008). Measuring the Quality of Software

Modularization Using Coupling-Based Structural Metrics for an OOS System. Paper

presented at the Emerging Trends in Engineering and Technology, 2008. ICETET

'08. First International Conference on.

Bin, X., Hua, H., Yun, L., Xiaohu, Y., Zhijun, H., & Ma, A. (2007). Efficient Collaborative

Task Arrangement in Global Software Design via Micro-Estimation and PERT

Technique. Paper presented at the Computer Supported Cooperative Work in Design,

2007. CSCWD 2007. 11th International Conference on.

Blashfield, A. a. (1984). Cluster Analysis. Newbury Park, California: Sage Publications.

Briand, L., & Wust, J. (2001). Modeling development effort in object-oriented systems using

design properties. IEEE Transactions on Software Engineering, 27(11), 963.

Brito e Abreu, F., & Goulao, M. (2001). Coupling and cohesion as modularization drivers:

are we being over-persuaded? Paper presented at the Software Maintenance and

Reengineering, 2001. Fifth European Conference on.

www.manaraa.com

47

Brito e Abreu, F., Pereira, G., & Sousa, P. (2000). A coupling-guided cluster analysis

approach to reengineer the modularity of object-oriented systems. Paper presented at

the Software Maintenance and Reengineering, 2000. Proceedings of the Fourth

European.

C.Wunsch, R. X. a. D. (2009). Clustering. New Jersey: A John Wiley &

Sons,Inc.Publication.

Cain, J. W., & McCrindle, R. J. (2002). An investigation into the effects of code coupling on

team dynamics and productivity. Paper presented at the Computer Software and

Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual

International.

Damian, D., & Moitra, D. (2006). Global Software Development: How Far Have We Come?

IEEE Software, 23(5), 17-19.

Darcy, D. P., Kemerer, C. F., Slaughter, S. A., & Tomayko, J. E. (2005). The structural

complexity of software an experimental test. Software Engineering, IEEE

Transactions on, 31(11), 982-995.

David, N. C., Gerald, T. P., & Frank, E. M. (1985). Criteria for software modularization.

Paper presented at the Proceedings of the 8th international conference on Software

engineering.

Edward Yourdon, L. L. C. (1975). Structured Design Fundamentals of a Discipline of

Computer Program and Systems Design New York: Yourdon Press.

Garlan, D., Allen, R., & Ockerbloom, J. (2009). Architectural Mismatch: Why Reuse Is Still

So Hard. Software, IEEE, 26(4), 66-69.

Hla Myat, K., Nan Si, K., & Ni Lar, T. (2005). To Visualize the Coupling among Modules.

Paper presented at the Information and Telecommunication Technologies, 2005.

APSITT 2005 Proceedings. 6th Asia-Pacific Symposium on.

www.manaraa.com

48

Hung-Fu, C., & Lu, S. C. Y. (2009). Decomposition and Traceability in Software Design.

Paper presented at the Computer Software and Applications Conference, 2009.

COMPSAC '09. 33rd Annual IEEE International.

Jain, A. K., Duin, R. P. W., & Jianchang, M. (2000). Statistical pattern recognition: a review.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(1), 4-37.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Comput.

Surv., 31(3), 264-323.

Jones, P. (1988). The Practical Guide to Structured Systems Design (2 ed.). Englewood

Cliffs, New Jersey: Yardon Press.

Kiczales, G. (1996). Beyond the black box: open implementation. Software, IEEE, 13(1), 8,

10-11.

Lieberherr, K. J., & Holland, I. M. (1989). Assuring good style for object-oriented programs.

Software, IEEE, 6(5), 38-48.

Lionel, C. B., Jurgen, W., John, W. D., & Porter, D. V. (2000). Exploring the relationship

between design measures and software quality in object-oriented systems. The

Journal of Systems and Software, 51(3), 245.

Michael, V., & David, N. (1996). Decoupling change from design. Paper presented at the

Proceedings of the 4th ACM SIGSOFT symposium on Foundations of software

engineering.

Mockus, A., & Weiss, D. M. (2001). Globalization by Chunking: A Quantitative Approach.

IEEE Software, 18(2), 30.

Myers, G. (1978). Composite/Structured Design. New York: Van Nostrand Reinhold.

Offutt, J., Abdurazik, A., & Schach, S. (2008). Quantitatively measuring object-oriented

couplings. Software Quality Journal, 16(4), 489.

Overview: Clustering Procedures. (2010). SAS/STAT(R) 9.2 User's Guide Second. Retrieved

11 Feb, 2010, from

www.manaraa.com

49

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_intro

clus_sect001.htm

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Commun. ACM, 15(12), 1053-1058.

Paul, J. C., & Jack, B. (2000). Utilizing cluster analysis to structure concurrent engineering

teams. IEEE Transactions on Engineering Management, 47(2), 269.

Sarkar, S., Kak, A. C., & Rama, G. M. (2008). Metrics for Measuring the Quality of

Modularization of Large-Scale Object-Oriented Software. Software Engineering,

IEEE Transactions on, 34(5), 700-720.

Sarkar, S., Rama, G. M., & Kak, A. C. (2007). API-Based and Information-Theoretic Metrics

for Measuring the Quality of Software Modularization. Software Engineering, IEEE

Transactions on, 33(1), 14-32.

Sarkar, S., Ramachandran, S., Kumar, G. S., Iyengar, M. K., Rangarajan, K., & Sivagnanam,

S. (2009). Modularization of a Large-Scale Business Application: A Case Study.

Software, IEEE, 26(2), 28-35.

Solver.com. (2009). Retrieved 11 Feb 2010, from http://www.solver.com/xlsplatform.htm

T.Ragsdale, C. (2007). Spreadsheet Modeling and Decision Analysis:A Practical

Introduction to Management Science. In A. v. Rosenberg (Ed.), (pp. 17). Mason,OH:

Thomson South-Western.

Yourdon, P. C. a. E. (1991). In Object-Oriented Design (pp. 128): Englewood Cliffs

NJ:Yourdon Press.

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_introclus_sect001.htm
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_introclus_sect001.htm
http://www.solver.com/xlsplatform.htm

www.manaraa.com

50

ACKNOWLEDGEMENTS

 I would like to take this opportunity to express my sincere gratitude to those who

helped me with this research work. First, Dr. Zhengrui Jiang for his guidance, patience,

support for this research and my graduate journey. His insights into the research topic and

words of encouragement inspired me and strengthened my hopes of completing graduate

education as planned. Second, I would like to thank Dr.Suzuki who helped me in

formulation of this thesis and third, Dr.Crum for his support and insightful comments. Third,

I would like to thank my roommates for their constructive criticism and insightful feedback

while I was writing this work and my best friend for always questioning my position on this

thesis and helping me unwind after long intervals of research and typing.

	2010
	Efficient techniques for partitioning software development tasks
	Samyukta Soothram
	Recommended Citation

	tmp.1335711608.pdf.xUypy

